SEED Platform Documentation
Release 2.3.0

The Regents of the University of California, through Lawrence Be

Jan 24, 2018

Contents

Getting Started

1.1 Development Setup
Deployment Guide

2.1

2.2 General Linux Setup
2.3

API

3.1 Authentication

3.2

33

3.4 API Endpoints
Data Model

4.1 parents and children

4.2 manual-matching vs auto-matching
4.3

4.4

4.5 organization

4.6 * source_id fields

4.7

4.8 saving and possible data loss
Mapping

5.1

52

53

54

Modules

6.1 Audit Logs Package

6.2 Configuration

6.3 Data Package

6.4 Data Importer Package

6.5 Features Package

6.6 Green Button Package

AWSSetup L

Monitoring

Payloads
Responses

what really happens to the BuildingSnapshot table on import (and when)
what really happens to the CanonicalBuilding table on import (and when)

extra_data

Import
Mapping e
Matching
Pairing oo oo

10

11

12

6.7 Landing Package L e e e e e e e
6.8 Library Packages L e e e e e e e
6.9 Mapping Package e e e e
6.10 Managers Package
6.11 Models e e e e e
6.12 PublicPackage e
6.13 SEED Package i i e e e e e e e e e
6.14 Serializers Package L e e e e e
6.15 URLsPackage e e e e e
6.16 Utilities Package e e
6.17 Views Package

Developer Resources

7.1 General Notes o L o i e e e e e e e e
7.2 Django NOtes o o i e e e e
7.3 Angular]S Integration NOtES v v v i e e e e e e e e e e e e e
T4 LOogEING . . . o o e e e e e e e e e e e e e e
7.5 BEDES Compliance and Managing Columns
7.6 Resetting the Database o . e e e e e e e
TT 0 TeStNG . . o v o o e e e e e e

License

Help
9.1 For SEED-Platform Users e e e
9.2 For SEED-Platform Developers e

Frequently Asked Questions
10.1 QUESLIONS v o e e e e e e e e e e e e e
10.2 ISSUES . . o o o e e e e e e e e e

Updating this documentation

Indices and tables

Python Module Index

135
135
135
136
137
137
137
138

139

141
141
141

143
143
144

145

147

149

SEED Platform Documentation, Release 2.3.0

The Standard Energy Efficiency Data (SEED) Platform™ is a web-based application that helps organizations easily
manage data on the energy performance of large groups of buildings. Users can combine data from multiple sources,
clean and validate it, and share the information with others. The software application provides an easy, flexible, and
cost-effective method to improve the quality and availability of data to help demonstrate the economic and environ-
mental benefits of energy efficiency, to implement programs, and to target investment activity.

The SEED application is written in Python/Django, with AngularJS, Bootstrap, and other JavaScript libraries used for
the front-end. The back-end database is required to be PostgreSQL.

The SEED web application provides both a browser-based interface for users to upload and manage their building
data, as well as a full set of APIs that app developers can use to access these same data management functions.

Work on SEED Platform is managed by the National Renewable Energy Laboratory, with funding from the U.S.
Department of Energy.

Contents 1

SEED Platform Documentation, Release 2.3.0

2 Contents

CHAPTER 1

Getting Started

1.1 Development Setup

1.1.1 Installation on OSX

These instructions are for installing and running SEED on Mac OSX in development mode.

Quick Installation Instructions
This section is intended for developers who may already have their machine ready for general development. If this is
not the case, skip to Prerequisites.

* install Postgres 9.4 and redis for cache and message broker

¢ use a virtualenv (if desired)

* git clone git@ github.com:seed-platform/seed.git

e create a local_untracked.py in the config/settings folder and add CACHE and DB config (example lo-
cal_untracked.py.dist)

export DJANGO_SETTINGS_MODULE=config.settings.dev

pip install -r requirements/local.txt

/manage.py migrate

/manage.py create_default_user

./manage.py runserver

e celery -A seed worker -1 info -c¢ 4 —maxtasksperchild 1000 —events

navigate to http://127.0.0.1:8000/app/#/profile/admin in your browser to add users to organizations
* main app runs at /27.0.0.1:8000/app

SEED Platform Documentation, Release 2.3.0

The python manage.py create_default_user will setup a default superuser which must be used to access the system the
first time. The management command can also create other superusers.

./manage.py create_default_user --username=demo@seed.lbl.gov —--organization=1bl --
—password=demol23

Prerequisites
These instructions assume you have MacPorts or Homebrew. Your system should have the following dependencies
already installed:

* git (port install git or brew install git)

e Mercurial (port install hg or brew install mercurial)

o graphviz (brew install graphviz)

* virtualenv and virtualenvwrapper (Recommended)

Note: Although you could install Python packages globally, this is the easiest way to install Python
packages. Setting these up first will help avoid polluting your base Python installation and make it
much easier to switch between different versions of the code.

pip install virtualenv
pip install virtualenvwrapper

* Follow instructions on virtualenvwrapper to setup your environment.

* Once you have these installed, creating and entering a new virtualenv called “seed” for SEED development is
by calling:

mkvirtualenv —--python=python2.7 seed

PostgreSQL 9.4

MacPorts:

sudo su — root

port install postgresqgl94-server postgresgl94 postgresgl94-doc

init db

mkdir -p /opt/local/var/db/postgresqgl94/defaultdb

chown postgres:postgres /opt/local/var/db/postgresgl94/defaultdb

su postgres -c '/opt/local/lib/postgresql94/bin/initdb -D /opt/local/var/db/
—postgresgl94/defaultdb’

At this point, you may want to add start/stop scripts or aliases to
~/.bashrc or your virtualenv " 'postactivate’ ' script
(in " ~/.virtualenvs/{env-name}/bin/postactivate’).

alias pg_start='sudo su postgres —-c "/opt/local/lib/postgresql94/bin/pg_ctl \
-D /opt/local/var/db/postgresql94/defaultdb \
-1 /opt/local/var/db/postgresqgl94/defaultdb/postgresgl.log start"'

alias pg_stop='sudo su postgres -c "/opt/local/lib/postgresgl94/bin/pg_ctl \
-D /opt/local/var/db/postgresql94/defaultdb stop"'

4 Chapter 1. Getting Started

https://www.macports.org/
http://brew.sh/
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/

SEED Platform Documentation, Release 2.3.0

pg_start

sudo su — postgres
PATH=$PATH: /opt/local/lib/postgresgl94/bin/

Homebrew:

brew install postgres

follow the post install instructions to add to launchagents or call
manually with ‘postgres -D /usr/local/var/postgres’

Skip the remaining Postgres instructions!

Configure PostgreSQL. Replace ‘seeddb’, ‘seeduser’ with desired db/user. By default use password seedpass when
prompted

createuser -P seeduser

createdb “~whoami®

psgl —-c 'CREATE DATABASE "seeddb" WITH OWNER = "seeduser";'

psgl —-c 'GRANT ALL PRIVILEGES ON DATABASE "seeddb" TO seeduser;'
psgl -c¢ 'ALTER USER seeduser CREATEDB;'

psgl —-c¢ 'ALTER USER seeduser CREATEROLE;'

Now exit any root environments, becoming just yourself (even though it’s not that easy being green), for the remainder
of these instructions.

Python Packages

Run these commands as your normal user id.

Change to a virtualenv (using virtualenvwrapper) or do the following as a superuser. A virtualenv is usually better for
development. Set the virtualenv to seed.

’workon seed

Make sure PostgreSQL command line scripts are in your PATH (if using port)

’export PATH=S$PATH:/opt/local/lib/postgresql94/bin

Some packages (uWSGI) may need to find your C compiler. Make sure you have ‘gcc’ on your system, and then also
export this to the CC environment variable:

export CC=gcc

Install requirements with pip

’pip install -r requirements/local.txt

NodeJS/npm

Install npm. You can do this by installing from nodejs.org, MacPorts, or Homebrew:

MacPorts:

sudo port install npm

1.1. Development Setup 5

https://www.npmjs.com/
http://nodejs.org/

SEED Platform Documentation, Release 2.3.0

Homebrew:

brew install npm

Configure Django and Databases

In the config/settings directory, there must be a file called local_untracked.py that sets up databases and a number of
other things. To create and edit this file, start by copying over the template

cd config/settings
cp local_untracked.py.dist local_untracked.py

Edit local_untracked.py. Open the file you created in your favorite editor. The PostgreSQL config section will look
something like this:

postgres DB config
DATABASES = {
'default': {

'"ENGINE': 'django.db.backends.postgresqgl_psycopg2',
'NAME': 'seeddb',

'USER': 'seeduser',

'"PASSWORD': 'seedpass',

'"HOST': 'localhost',

"PORT': '5432"',

You may want to comment out the AWS settings.

For Redis, edit the CACHES and CELERY _BROKER_URL values to look like this:

CACHES = {
'default': {
'"BACKEND': 'redis_cache.cache.RedisCache',
'"LOCATION': "127.0.0.1:6379",

"OPTIONS': {'DB': 1},
"TIMEOUT': 300

}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1"

Run Django Migrations

Change back to the root of the repository. Now run the migration script to set up the database tables

export DJANGO_SETTINGS MODULE=config.settings.dev

./manage.py migrate

Django Admin User

You need a Django admin (super) user.

./manage.py create_default_user —--username=admin@my.org --organization=lbnl --—
—password=badpass

6 Chapter 1. Getting Started

SEED Platform Documentation, Release 2.3.0

Of course, you need to save this user/password somewhere, since this is what you will use to login to the SEED
website.

If you want to do any API testing (and of course you do!), you will need to add an API KEY for this user. You can do
this in postgresql directly:

psgl seeddb seeduser
seeddb=> update landing_seeduser set api key='DEADBEEF' where id=1;

The ‘secret’ key DEADBEEF is hard-coded into the test scripts.

Install Redis

You need to manually install Redis for Celery to work.

MacPorts:

sudo port install redis

Homebrew:

brew install redis
follow the post install instructions to add to launchagents or
call manually with ‘redis-server'

Install JavaScript Dependencies

The JS dependencies are installed using node.js package management (npm), with a helper package called bower.

./bin/install_javascript_dependencies.sh

Start the Server

You should put the following statement in ~/.bashrc or add it to the virtualenv post-activation script (e.g., in ~/.vir-
tualenvs/seed/bin/postactivate).

’export DJANGO_SETTINGS_MODULE=config.settings.dev

The combination of Redis, Celery, and Django have been encapsulated in a single shell script, which examines existing
processes and does not start duplicate instances:

’./bin/startfseed.sh

When this script is done, the Django stand-alone server will be running in the foreground.

Login

Open your browser and navigate to http://127.0.0.1:8000

Login with the user/password you created before, e.g., admin@my.org and badpass.

Note: these steps have been combined into a script called start-seed.sh. The script will also not start Celery or Redis
if they already seem to be running.

1.1. Development Setup 7

http://127.0.0.1:8000

SEED Platform Documentation, Release 2.3.0

1.1.2 Installation using Docker
Docker works natively on Linux, Mac OSX, and Windows 10. If you are using an older version of Windows (and
some older versions of Mac OSX), you will need to install Docker Toolbox.

Choose either Docker Toolbox, Docker Native (Windows/OSX), or Docker Native (Ubuntu) to install Docker.

Docker Toolbox

Install Docker-Toolbox, which installs several applications including Docker, Docker Machine, and Docker Compose.
* Create Docker-Machine Image

The command below will create a 100GB volume for development. This is a very large volume and
can be adjusted. Make sure to create a volume greater than 30GB.

docker-machine create —--virtualbox-disk-size 100000 -d virtualbox dewv

* Start Docker-Machine Image

docker-machine start dev # if not already running
export environment variables
eval $(docker—-machine env dev)

* Get the Docker IP address (docker-machine ip dev)

Docker Native (Ubuntu)

Follow instructions [here](https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/).
¢ [Install Docker Compose](https://docs.docker.com/compose/install/)

Docker Native (Windows/OSX)

Following instructions (for Mac)[https://docs.docker.com/docker-for-mac/install/] or (for Windows)[https://docs.
docker.com/docker-for-windows/install/].

¢ [Install Docker Compose](https://docs.docker.com/compose/install/)

Building and Configuring Containers

* Run Docker Compose

’dockerfcompose build ‘

Be Patient ... If the containers build successfully, then start the containers

’dockerfcompose up ‘

Note that you may need to build the containers a couple times for everything to converge
* Login to container

The docker-compose file creates a default user and password. Below are the defaults but can be
overridden by setting environment variables.

8 Chapter 1. Getting Started

https://docs.docker.com/toolbox/overview/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/compose/install/
https://www.youtube.com/watch?v=f4hkPn0Un_Q

SEED Platform Documentation, Release 2.3.0

username: user@seed-platform.org
password: super—-secret-password

Note: Don’t forget that you need to reset your default username and password if you are going to use these Docker
images in production mode!

1.1. Development Setup 9

SEED Platform Documentation, Release 2.3.0

10 Chapter 1. Getting Started

CHAPTER 2

Deployment Guide

SEED is intended to be installed on Linux instances in the cloud (e.g. AWS), and on local hardware. SEED Platform
does not officially support Windows for production deployment. If this is desired, see the Django notes.

2.1 AWS Setup

Amazon Web Services (AWS) provides the preferred hosting for the SEED Platform.

seed is a Django Project and Django’s documentation is an excellent place for general understanding of this project’s
layout.

2.1.1 Prerequisites

Ubuntu server 14.04 or newer.

sudo apt—-get update

sudo apt-get upgrade

sudo apt-get install -y libpg-dev python-dev python-pip libatlas-base-dev \
gfortran build-essential g++ npm libxml2-dev libxsltl-dev git mercurial \
libssl-dev curl uwsgi-core uwsgi-plugin-python

PostgreSQL and Redis are not included in the above commands. For a quick installation on AWS it is okay to install
PostgreSQL and Redis locally on the AWS instance. If a more permanent and scalable solution, it is recommended to
use AWS’s hosted Redis (ElastiCache) and PostgreSQL service.

Note: postgresql >=9. 4 is required to support ‘JSON Type‘_

To install PostgreSQL and Redis locally
sudo apt—-get install redis-server
sudo apt-get install postgresqgl postgresgl-contrib

11

https://docs.djangoproject.com/en/1.7/howto/windows/
http://aws.amazon.com/
https://www.djangoproject.com/

SEED Platform Documentation, Release 2.3.0

Amazon Web Services (AWS) Dependencies

The following AWS services are used for SEED:
* RDS (PostgreSQL >=9.4)
¢ ElastiCache (redis)
* SES

2.1.2 Python Dependencies

Clone the SEED repository from github

$ git clone git@github.com:SEED-platform/seed.qgit

enter the repo and install the python dependencies from requirements

$ cd seed
$ sudo pip install -r requirements/local.txt

2.1.3 JavaScript Dependencies

npm is required to install the JS dependencies. The bin/install_javascript_dependencies. sh script
will download all JavaScript dependencies and build them. bower and gulp should be installed globally for conve-
nience.

$ sudo apt—-get install build-essential
$ sudo apt-get install curl

$ sudo npm install -g bower gulp
$ bin/install_javascript_dependencies.sh

2.1.4 Database Configuration

Copy the local_untracked.py.dist file in the config/settings directory to config/settings/
local_untracked.py, and add a DATABASES configuration with your database username, password, host, and
port. Your database configuration can point to an AWS RDS instance or a PostgreSQL 9.4 database instance you have
manually installed within your infrastructure.

Database
DATABASES = {
'default': {
'ENGINE':'django.db.backends.postgresqgl_psycopg2',
'NAME': 'seed',
'"USER': '"',
'"PASSWORD': '',
"HOST': '',
'"PORT': '',

12 Chapter 2. Deployment Guide

https://github.com/SEED-platform/seed/blob/master/requirements/local.txt

SEED Platform Documentation, Release 2.3.0

In the above database configuration, seed is the database name, this is arbitrary and any valid name can be used as
long as the database exists.

create the database within the postgres psqgl shell:

’CREATE DATABASE seed;

or from the command line:

’createdb seed

create the database tables and migrations:

python manage.py syncdb
python manage.py migrate

create a superuser to access the system

$ python manage.py create_default_user —--username=demo@example.com —-—
—organization=example —--password=demol23

Note: Every user must be tied to an organization, visit /app/#/profile/admin as the superuser to create parent
organizations and add users to them.

2.1.5 Cache and Message Broker

The SEED project relies on redis for both cache and message brokering, and is available as an AWS ElastiCache
service. local_untracked.py should be updated with the CACHES and CELERY_BROKER_URL settings.

CACHES = {
'default': {
'"BACKEND': 'redis_cache.cache.RedisCache',
'"LOCATION': "seed-core-cache.ntmprk.0001l.usw2.cache.amazonaws.com:6379",

"OPTIONS': { 'DB': 1 },
'"TIMEOUT': 300

}
CELERY_BROKER_URL = 'redis://seed-core-cache.ntmprk.0001l.usw2.cache.amazonaws.
—com:6379/1"

2.1.6 Running Celery the Background Task Worker

Celery is used for background tasks (saving data, matching, creating projects, etc) and must be connected to the
message broker queue. From the project directory, celery can be started:

celery —-A seed worker -1 INFO -c 2 -B —-events —-maxtasksperchild 1000

2.1.7 Running the Development Web Server

The Django dev server (not for production use) can be a quick and easy way to get an instance up and running. The
dev server runs by default on port 8000 and can be run on any port. See Django’s runserver documentation for more
options.

2.1. AWS Setup 13

http://redis.io/
https://aws.amazon.com/elasticache/
http://www.celeryproject.org/
https://docs.djangoproject.com/en/1.6/ref/django-admin/#django-admin-runserver

SEED Platform Documentation, Release 2.3.0

$./manage.py runserver

2.1.8 Running a Production Web Server
Our recommended web server is uwsgi sitting behind nginx. The bin/start_uwsgi. sh script can been created
to start uwsgi assuming your Ubuntu user is named ubuntu.

Also, static assets will need to be moved to S3 for production use. The bin/post_compile script contains a list
of commands to move assets to S3.

’$ bin/post_compile

’$ bin/start_uwsgi

The following environment variables can be set within the ~/ . bashrc file to override default Django settings.

export SENTRY DSN=https://xyz@app.getsentry.com/123
export DEBUG=False
export ONLY_ HTTPS=True

2.2 General Linux Setup

While Amazon Web Services (AWS) provides the preferred hosting for SEED, running on a bare-bones Linux server
follows a similar setup, replacing the AWS services with their Linux package counterparts, namely: PostgreSQL and
Redis.

SEED is a Django project and Django’s documentation is an excellent place to general understanding of this project’s
layout.

2.2.1 Prerequisites

Ubuntu server 14.04 or newer

Install the following base packages to run SEED:

sudo apt—-get update

sudo apt—-get upgrade

sudo apt-get install libpg-dev python-dev python-pip libatlas-base-dev \
gfortran build-essential g++ npm libxml2-dev libxsltl-dev git mercurial \
libssl-dev curl uwsgi-core uwsgi-plugin-python

sudo apt—-get install redis-server

sudo apt—-get install postgresgl postgresgl-contrib

Note: postgresql >=9. 3 is required to support JSON Type

2.2.2 Configure PostgreSQL

14 Chapter 2. Deployment Guide

https://github.com/SEED-platform/seed/blob/master/bin/start_uwsgi.sh
http://aws.amazon.com/
https://www.djangoproject.com/
http://www.postgresql.org/docs/9.3/static/datatype-json.html

SEED Platform Documentation, Release 2.3.0

sudo su — postgres

createdb "seed-deploy"

createuser —-P DBUsername

psqgl

postgres=# GRANT ALL PRIVILEGES ON DATABASE "seed-deploy" TO DBUsername;
postgres=# \g

$ exit

v v v Wn

Note: Any database name and username can be used here in place of “seed-deploy” and DBUsername

2.2.3 Python Dependencies

clone the seed repository from github

$ git clone git@github.com:SEED-platform/seed.git

enter the repo and install the python dependencies from requirements

$ cd seed
$ sudo pip install -r requirements/local.txt

2.2.4 JavaScript Dependencies

npm is required to install the JS dependencies. The bin/install_javascript_dependencies. sh script
will download all JavaScript dependencies and build them. bower and gulp should be installed globally for conve-
nience.

$ curl -sL https://deb.nodesource.com/setup_5.x | sudo -E bash -
$ sudo apt—-get install -y nodeijs
$ sudo npm install -g bower gulp

$ bin/install_javascript_dependencies.sh

2.2.5 Django Database Configuration

Copy the 1local_untracked.py.dist file in the config/settings directory to config/settings/
local_untracked.py, and add a DATABASES configuration with your database username, password, host, and
port. Your database configuration can point to an AWS RDS instance or a PostgreSQL 9.4 database instance you have
manually installed within your infrastructure.

Database
DATABASES = {

'default': {
'"ENGINE':'django.db.backends.postgresgl_psycopg2',
'NAME': 'seed-deploy',

'USER': 'DBUsername',
'"PASSWORD': '',
'"HOST': 'localhost',
"PORT': '5432',

2.2. General Linux Setup 15

https://github.com/SEED-platform/seed/blob/master/requirements/local.txt

SEED Platform Documentation, Release 2.3.0

Note: Other databases could be used such as MySQL, but are not supported due to the postgres-specific JSON Type

In in the above database configuration, seed is the database name, this is arbitrary and any valid name can be used as
long as the database exists. Enter the database name, user, password you set above.

The database settings can be tested using the Django management command, . /manage.py dbshell to connect
to the configured database.

create the database tables and migrations:

$ python manage.py migrate

2.2.6 Cache and Message Broker

The SEED project relies on redis for both cache and message brokering, and is available as an AWS ElastiCache
service or with the redis—-server Linux package. (sudo apt-get install redis-server)

local_untracked.py should be updated with the CACHES and CELERY_BROKER_URL settings.

CACHES = {
'default': {
'"BACKEND': 'redis_cache.cache.RedisCache',
'LOCATION': "127.0.0.1:6379",

'"OPTIONS': {'DB': 1},
'TIMEOUT': 300

}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1"

2.2.7 Creating the initial user

create a superuser to access the system

$ python manage.py create_default_user —--username=demoQRexample.com —-—
—organization=example —--password=demol23

Note: Every user must be tied to an organization, visit /app/#/profile/admin as the superuser to create parent
organizations and add users to them.

2.2.8 Running celery the background task worker

Celery is used for background tasks (saving data, matching, creating projects, etc) and must be connected to the
message broker queue. From the project directory, celery can be started:

celery —-A seed worker -1 INFO -c 2 -B ——events —--maxtasksperchild 1000

16 Chapter 2. Deployment Guide

http://www.postgresql.org/docs/9.3/static/datatype-json.html
http://redis.io/
https://aws.amazon.com/elasticache/
http://www.celeryproject.org/

SEED Platform Documentation, Release 2.3.0

2.2.9 Running the development web server

The Django dev server (not for production use) can be a quick and easy way to get an instance up and running. The
dev server runs by default on port 8000 and can be run on any port. See Django’s runserver documentation for more
options.

$ python manage.py runserver —--settings=config.settings.dev

2.2.10 Running a production web server

Our recommended web server is uwsgi sitting behind nginx. The python package uwsgi is needed for this, and should
install to /usr/local/bin/uwsgi Since AWS S3, is not being used here, we recommend using dj—static to
load static files.

Note: The use of the dev settings file is production ready, and should be used for non-AWS installs with DEBUG set
to False for production use.

’$ sudo pip install uwsgi dj-static

Generate static files:

’$ sudo ./manage.py collectstatic —--settings=config.settings.dev

Update config/settings/local_untracked.py:

DEBUG = False

static files

STATIC_ROOT = 'collected static’
STATIC_URL = '/static/'

Start the web server:

$ sudo /usr/local/bin/uwsgi —--http :80 --module standalone_uwsgi --max-requests 5000 -
—-pidfile /tmp/uwsgi.pid --single—-interpreter --enable-threads —--cheaper—-initial 1 -
—P 4

Warning: Note that uwsgi has port set to 80. In a production setting, a dedicated web server such as NGINX
would be receiving requests on port 80 and passing requests to uwsgi running on a different port, e.g 8000.

2.2.11 Environmental Variables

The following environment variables can be set within the ~/ . bashrc file to override default Django settings.

export SENTRY_DSN=https://xyz@app.getsentry.com/123
export DEBUG=False
export ONLY HTTPS=True

2.2. General Linux Setup 17

https://docs.djangoproject.com/en/1.6/ref/django-admin/#django-admin-runserver

SEED Platform Documentation, Release 2.3.0

2.2.12 SMTP service

In the AWS setup, we can use SES to provide an email service for Django. The service is configured in the con-
fig/settings/main.py:

EMAIL_BACKEND = 'django_ses.SESBackend'

Many options for setting up your own SMTP service/server or using other SMTP third party services are available and
compatible including gmail.

Django can likewise send emails via python’s smtplib with sendmail or postfix installed. See their docs for more info.

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

2.2.13 local_untracked.py

PostgreSQL DB config
DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'"NAME': 'seed',

'USER': 'your-username',

'"PASSWORD': 'your—-password',

'"HOST': 'your-host',

'"PORT': 'your-port',

config for local storage backend
DOMAIN_URLCONFS = {}

DOMAIN_URLCONFS['default'] = 'urls.main'
CACHES = {
'default': {
'"BACKEND': 'redis_cache.cache.RedisCache',
'LOCATION': "127.0.0.1:6379",

'OPTIONS': {'DB': 1},
'TIMEOUT': 300

}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1"

SMTP config
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

static files
STATIC_ROOT = 'collected static’
STATIC_URL = '/static/'

18 Chapter 2. Deployment Guide

http://stackoverflow.com/questions/19264907/python-django-gmail-smtp-setup
https://docs.djangoproject.com/en/1.6/topics/email/

SEED Platform Documentation, Release 2.3.0

2.3 Monitoring

2.3.1 Sentry

Sentry can monitor your webservers for any issues. To enable sentry add the following to your local_untracked.py
files after setting up your Sentry account on sentry.io.

The RAVEN_CONFIG is used for the backend and the SENTRY_JS_DSN is used for the frontend. At the moment, it
is recommended to setup two sentry projects, one for backend and one for frontend.

import raven

RAVEN_CONFIG = {
'dsn': 'https://<user>:<key>@sentry.io/<job_id>",
If you are using git, you can also automatically configure the
release based on the git info.
'release': raven.fetch_git_sha(os.path.abspath(os.curdir)),
}
SENTRY_JS_DSN = 'https://<key>Esentry.io/<job_id>"

2.3. Monitoring 19

SEED Platform Documentation, Release 2.3.0

20 Chapter 2. Deployment Guide

CHAPTER 3

API

3.1 Authentication

Authentication is handled via an authorization token set in an HTTP header. To request an API token, go to /app/
#/profile/developer and click ‘Get a New API Key’.

Authenticate every API request with your username (email) and the API key via Basic Auth.

Using Python, use the requests library:

import requests

result = requests.get ('https://seed-platform.org/api/v2/version/', auth=(user_email,
—api_key))
print result.json()

Using curl, pass the username and API key as follows:

’curl -u user_email:api_key http://seed-platform.org/api/v2/version/

If authentication fails, the response’s status code will be 302, redirecting the user to /app/login.

3.2 Payloads

Many requests require a JSON-encoded payload and parameters in the query string of the url. A frequent requirement
is including the organization_id of the org you belong to. For example:

’curl -u user_email:api_key https://seed-platform.org/api/v2/organizations/12/

Or in a JSON payload:

21

https://en.wikipedia.org/wiki/Basic_access_authentication

SEED Platform Documentation, Release 2.3.0

curl -u user_email:api_key \
-d '{"organization_id":6, "role": "viewer"}' \
https://seed-platform.org/api/v2/users/12/update_role/

Using Python:

params = {'organization_id': 6, 'role': 'viewer'}

result = requests.post('https://seed-platform.org/api/v2/users/12/update_role/",
data=json.dumps (params),
auth=(user_email, api_key))

print result.json()

3.3 Responses

Responses from all requests will be JSON-encoded objects, as specified in each endpoint’s documentation. In the case
of an error, most endpoints will return this instead of the expected payload (or an HTTP status code):

{
"status": "error",
"message": "explanation of the error here"

3.4 API Endpoints

A list of interactive endpoints are available by accessing the API menu item on the left navigation pane within you
account on your SEED instance.

To view a list of non-interactive endpoints without an account, view swagger on the development server.

22 Chapter 3. API

https://seed-platform.org/api/swagger/

CHAPTER 4

Data Model

Case A: 1 Building to 1 Parcel

Parcel 100

Building

Address 1

Source Data

Tax Assessor Data Building Dat
One Tax Lot ID per record uliing Tata
Tax Lot ID | Address District Building 1D Taxlot ID
100 44 West 1st Willow 30 100
Portfolio Manager Data
One PM record associated with one Tax Lot ID or Building ID

PMID | Building ID Tax Lot ID Energy Score | EUI Year Ending
1 30 100 76 15,000 12/31/2015

23

SEED Platform Documentation, Release 2.3.0

Address 4
Case B: Many Buildings to 1 Parcel 4
Parcel 101
Building >
Address 3
Address 5
< Building
Address 2
Source Data
Building Data

Tax Assessor Data
One Tax Lot ID per record

Building ID Tax Lot ID

Tax Lot ID | Address District 101-A 101

101 15 Broadway Willow

101-B 101

Portfolio Manager Data
Multiple PM records associated with one Tax Lot ID or Building ID

PMID Building ID Tax Lot ID Energy Score EUI Year Ending
2 101-A 101 66 12,000 12/31/2015
3 101-B 101 98 2,500 12/31/2015

24 Chapter 4. Data Model

SEED Platform Documentation, Release 2.3.0

Case C: 1 Building to many Parcels

Parcel 200 Parcel 300 Parcel 400
Address 6
-
Building Address 8
Address 7
Source Data
Tax Assessor Data
One Tax Lot ID per record
Tax Lot ID | Address District Building Data
200 1 Adams Willow Building ID Tax Lot ID
300 2 West Willow 44 200;300;400
400 3 Exeter Willow
Portfolio Manager Data
One PM record or Building ID associated with Multiple Tax Lot IDs
PM ID Building ID Tax Lot ID Energy Score EUI Year Ending
4 a4 200;300;400 | 82 161,000 12/31/2015

25

SEED Platform Documentation, Release 2.3.0

Case D: Many buildings to many parcels (campus?)

Parcel 200 I Parcel 300

Parcel 450
| —
Address 9 o | | Building Address 12
Address 10 | | Building Building
¥
Address 11
Source Data
Tax Assessor Data
One Tax Lot ID per record Building Data
Tax Lot ID | Address District Building ID Tax Lot ID
200 1 Adams Willow L1 200;300;400
300 2 West Willow L2 200
400 3 Exeter Willow L3 300;450
Portfolio Manager Data
Hierarchical campus to building:
One PM record for campus and multiple PM records for campus buildings related many to many to Tax Lots

PM ID Property Name | Parent Name Parent PM ID | Tax Lot ID Energy Score EUI Year Ending
5 Lucky Campus Lucky Campus 5 200;300;450 | -- - 12/31/2013
6 Building 1 Lucky Campus 5 200;300;450 | 59 107 12/31/2013
7 Building 2 Lucky Campus 5 200 62 268 12/31/2013
8 Building 3 Lucky Campus 5 300;450 74 961 12/31/2013

e TaxLot Tables propery llows Property Tables

m::::. singl: :mu::isng or/

Cycle V ;mpeny :l

establishes
time. ;y

period_end

“extra_data" field

id d
cie_name
fevcte_n a

Tax Lot State

Tax Lot View N

associates Tax Lot
.-mmw
- Audit log tracks

lparent_pioperty_id

Property View

curren_viewid
[PropertyView
ia

‘propery_id

associates Property
"stites"byy

Property State
contains the primary

data for properties,
including energy (PM)
data

contains the

primary data
for tax lots

[rumber_buildings

allows definition of
fields not formally
defined in the table.

e/

K10 Cyclorid

all changesmade | + o Oygiid P _—
to the Tax Lot . F]
‘State records ' =
_ . lursdicion_propery_identier
- . loLnumber Audit log tracks
f : e all changes made
e ' e ————1 to the Property
o . . State records.
istate_id N |state -
ldate : lposal_code r
g] H ouiding_court.
cid . [PropertyAuditiog
[name N lid
(description . ia
. i
. e_id
FK to MargeRscordtia (NOT SHOWN) . =
'
. (dscpion
. i
FK to ImponRecordid (NOT SHOWN) ' P
. P10 Progenyid
'
P to TakLotic .
' “extra_data’ field
allows definition of
[fields not formally
ndoPropertyi?tt | defined in the table. . ys——
ot view_ia -
viewSd FK o Imperiecordid (NOT SHOWR)
lcydleid o8]
M2M table allows many -~ C:l"ﬁ"‘ i leneroy_alens
to many i i [petve. 'space_alerts
[prmary |building_certification

between Tax Lot and
Property

26

Chapter 4. Data Model

SEED Platform Documentation, Release 2.3.0

Todo: Documentation below is out of state and needs updated.

Our primary data model is based on a tree structure with BuildingSnapshot instances as nodes of the tree and the tip
of the tree referenced by a CanonicalBuilding.

Take the following example: a user has loaded a CSV file containing information about one building and created the
first BuildingSnapshot (BS0). At this point in time, BSO is linked to the first CanonicalBuilding (CBO0), and CBO is
also linked to BSO.

BSO <—-- CBO
BSO —--> CBO

These relations are represented in the database as foreign keys from the BuildingSnapshot table to the CanonicalBuild-
ing table, and from the CanonicalBuilding table to the BuildingSnapshot table.

The tree structure comes to fruition when a building, BSO in our case, is matched with a new building, say BS1, enters
the system and is auto-matched.

Here BS1 entered the system and was matched with BSO. When a match occurs, a new BuildingSnapshot is created,
BS2, with the fields from the existing BuildingSnapshot, BS0O, and the new BuildingSnapshot, BS1, merged together.
If both the existing and new BuildingSnapshot have data for a given field, the new record’s fields are preferred and
merged into the child, B3.

The fields from new snapshot are preferred because that is the newer of the two records from the perspective of the
system. By preferring the most recent fields this allows for evolving building snapshots over time. For example, if an
existing canonical record has a Site EUI value of 75 and some changes happen to a building that cause this to change
to 80 the user can submit a new record with that change.

All BuildingSnapshot instances point to a CanonicalBuilding.

BSO BS1

\ /
BS2 <-- CBO

BS0O —--> CBO
BS1 —--> CBO
BS2 ——> CBO

4.1 parents and children

BuildingSnapshots also have linkage to other BuildingSnapshots in order to keep track of their parents and children.
This is represented in the Django model as a many-to-many relation from BuildingSnapshot to BuildingSnapshot. It
is represented in the PostgreSQL database as an additional seed_buildingsnapshot_children table.

In our case here, BSO and BS1 would both have children BS2, and BS2 would have parents BSO and BS1.

Note: throughout most of the application, the search_buildings endpoint is used to search or list active build-
ing. This is to say, buildings that are pointed to by an active CanonicalBuilding. The search_mapping_ results
endpoint allows the search of buildings regardless of whether the BuildingSnapshot is pointed to by an active Canoni-
calBuilding or not and this search is needed during the mapping preview and matching sections of the application.

For illustration purposes let’s suppose BS2 and a new building BS3 match to form a child BS4.

4.1. parents and children 27

SEED Platform Documentation, Release 2.3.0

parent | child
BSO BS2
BSI BS2
BS2 BS4
BS3 BS4

And the corresponding tree would look like:

BSO BS1
\/
BS2 BS3
A

BS4 <-- CBO

BSO —--> CBO
BS1 --> CBO
BS2 ——> CBO
BS3 —--> CBO
BS4 —--> CBO

4.1.1 matching

During the auto-matching process, if a raw BuildingSnapshot matches an existing BuildingSnapshot instance, then
it will point to the existing BuildingSnapshot instance’s CanonicalBuilding. In the case where there is no existing
BuildingSnapshot to match, a new CanonicalBuilding will be created, as happened to BO and CO above.

field | BSO | BS1 | BS2 (child)
id1 11 11 11
id2 12 12
id3 13 13
id4 14 15 15

4.2 manual-matching vs auto-matching

Since BuildingSnapshots can be manually matched, there is the possibility for two BuildingSnapshots each with an
active CanonicalBuilding to match and the system has to choose to move only one CanonicalBuilding to the tip of the
tree for the primary BuildingSnapshot and deactivate the secondary BuildingSnapshot’s CanonicalBuilding.

Take for example:

BSO BS1

\/
BS2 BS3

N/
BS4 <-- CBO (active: True) BS5 <-- CB1 (active: True)

If a user decides to manually match BS4 and BSS5, the system will take the primary BuildingSnapshot’s Canonical-
Building and have it point to their child and deactivate CB1. The deactivation is handled by setting a field on the
CanonicalBuilding instance, active, from True to False.

Here is what the tree would look like after the manual match of BS4 and BS5:

28 Chapter 4. Data Model

SEED Platform Documentation, Release 2.3.0

BSO BS1
\/
BS2 BS3
\ 7
BS4 BS5 <—— CBl (active: False)
\ 7/

BS6 <—— CBO (active: True)

Even though BSS5 is pointed to by a CanonicalBuilding, CB1, BS5 will not be returned by the normal
search_buildings endpoint because the CanonicalBuilding pointing to it has its field act ive set to False.

Note: anytime a match is unmatched the system will create a new CanonicalBuilding or set an existing Canonical-
Building’s active field to True for any leaf BuildingSnapshot trees.

4.3 what really happens to the BuildingSnapshot table on import (and
when)

The above is conceptually what happens but sometimes the devil is in the details. Here is what happens to the Build-
ingSnapshot table in the database when records are imported.

Every time a record is added at least two BuildingSnapshot records are created.

Consider the following simple record:

Property Id | Year Ending | Property Floor Area | Address 1 | Release Date
499045 2000 1234 1 fake st 12/12/2000

The first thing the user is upload the file. When the user sees the “Successful Upload!” dialog one record has been
added to the BuildingSnapshot table.

This new record has an id (73700 in this case) and a created and modified timestamp. Then there are a lot of empty
fields and a source_type of 0. Then there is the extra_data column which contains the contents of the record in
key-value form:

Address 1 “1 fake st”

Property Id “499045”

Year Ending “2000”

Release Date “12/12/2000”

Property Floor Area “1234”
And a corresponding extra_data_sources that looks like

Address 1 73700

Property Id 73700

Year Ending 73700

Release Date 73700

Property Floor Area 73700

4.3. what really happens to the BuildingSnapshot table on import (and when) 29

SEED Platform Documentation, Release 2.3.0

All of the fields that look like _source_id are also populated with 73700 E.G. owner_postal_code_source_id.

The other fields of interest are the organization field which is populated with the user’s default organization and the
import_file_id field which is populated with a reference to a data_importer_importfile record.

At this point the record has been created before the user hits the “Continue to data mapping” button.

The second record (id = 73701) is created by the time the user gets to the screen with the “Save Mappings” button.
This second record has the following fields populated:

e id
e created
* modified
e pm_property_id
* year_ending
* gross_floor_area
e address_line_1
* release_date
* source_type (this is 2 instead of 0 as with the other record)
 import_file_id
* organization_id.
That is all. All other fields are empty. In this case that is all that happens.

Now consider the same user uploading a new file from the next year that looks like

Property Id | Year Ending | Property Floor Area | Address 1 | Release Date
499045 2000 1234 1 fake st 12/12/2001

As before one new record is created on upload. This has id 73702 and follows the same pattern as 73700. And
similarly 73703 is created like 73701 before the “Save Mappings” button appears.

However this time the system was able to make a match with an existing record. After the user clicks the “Confirm
mappings & start matching” button a new record is created with ID 73704.

73704 is identical to 73703 (in terms of contents of the BuildingSnapshot table only) with the following exceptions:
* created and modified timestamps are different
* match type is populated and has a value of 1
* confidence is populated and has a value of .9
* source_type is 4 instead of 2
* canonical_building_id is populated with a value
e import_file_id is NULL
* last_modified_by_id is populated with value 2 (This is a key into the landing_seeduser table)
¢ address_line_1_source_id is 73701
* gross_floor_area_source_id is populated with value 73701
e pm_property_id_source_id is populated with 73701

* release_date_source_id is populated with 73701

30 Chapter 4. Data Model

SEED Platform Documentation, Release 2.3.0

* year_ending_source_id is populated with 73701

4.4 what really happens to the CanonicalBuilding table on import
(and when)

In addition to the BuildingSnapshot table the CanonicalBuilding table is also updated during the import process. To
summarize the above 5 records were created in the BuildingSnapshot table:

1. 73700 is created from the raw 2000 data

2. 73701 is the mapped 2000 data,

3. 73702 is created from the raw 2001 data

4. 73703 is the mapped 2001 data

5. 73704 is the result of merging the 2000 and 2001 data.

In this process CanonicalBuilding is updated twice. First when the 2000 record is imported the CanonicalBuilding
gets populated with one new row at the end of the matching step. I.LE. when the user sees the “Load More Data” screen.
At this point there is a new row that looks like

id active | canonical_building_id
20505 | TRUE | 73701

At this point there is one new canonical building and that is the BuildingSnapshot with id 73701. Next the user uploads
the 2001 data. When the “Matching Results” screen appears the CanonicalBuilding table has been updated. Now it
looks like

id active | canonical_building_id
20505 | TRUE | 73704

There is still only one canonical building but now it is the BuildingSnapshot record that is the result of merging the
2000 and 2001 data: id = 73704.

4.5 organization

BuildingSnapshots belong to an Organization field that is a foreign key into the organization model (orgs_organization
in Postgres).

Many endpoints filter the buildings based on the organizations the requesting user belongs to. E.G. get_buildings
changes which fields are returned based on the requesting user’s membership in the BuildingSnapshot’s organization.

4.6 *_source_id fields

Any field in the BuildingSnapshot table that is populated with data from a submitted record will have a corresponding
_source_id field. E.G pm_property_id has pm_property_id_source_id, address_line_1 has address_line_1_source_id,
etc. ..

These are foreign keys into the BuildingSnapshot that is the source of that value. To extend the above table

4.4. what really happens to the CanonicalBuilding table on import (and when) 31

SEED Platform Documentation, Release 2.3.0

field | BSO | BS1 | BS2 (child) | BS2 (child) _source_id
dl | 11 1 BSO
id2 12 |12 BSI

NOTE: The BuildingSnapshot records made from the raw input file have all the _source_id fields populated with that
record’s ID. The non-canonical BuildingSnapshot records created from the mapped data have none set. The canonical
BuildingSnapshot records that are the result of merging two records have only the _source_id fields set where the
record itself has data. E.G. in the above address_line_1 is set to “1 fake st.” so there is a value in the canonical
BuildingSnapshot’s address_line_1_source_id field. However there is no block number so block_number_source_id
is empty. This is unlike the two raw BuildingSnapshot records who also have no block_number but nevertheless have
a block_number_source_id populated.

4.7 extra data

The BuildingSnapshot model has many “named” fields. Fields like “address_line_1”, “year_built”, and
“pm_property_id”. However the users are allowed to submit files with arbitrary fields. Some of those arbitrary fields
can be mapped to “named” fields. E.G. “Street Address” can usually be mapped to “Address Line 1”. For all the fields
that cannot be mapped like that there is the extra_data field.

extra_data is Django json field that serves as key-value storage for other user-submitted fields. As with the other
“named” fields there is a corresponding extra_data_sources field that serves the same role as the other _source_id
fields. E.G. If a BuildingSnapshot has an extra_data field that looks like

an_unknown_field 1
something_else 2

It should have an extra_data_sources field that looks like
an_unknown_field some_BuildingSnapshot_id

something_else another_BuildingSnapshot_id

4.8 saving and possible data loss

When saving a Property file some fields that are truncated if too long. The following are truncated to 255 characters
* jurisdiction_tax_lot_id
e pm_property_id
e custom_id_1
* ubid
* lot_number
¢ block_number
e district
* owner
e owner_email
* owner_telephone

e owner_address

32 Chapter 4. Data Model

SEED Platform Documentation, Release 2.3.0

And the following are truncated to 255:

No truncation happens to any of the fields stored in extra_data.

owner_city_state

owner_postal_code

property_name
address_line_1
address_line_2
city
postal_code
state_province

building_certification

4.8. saving and possible data loss

33

SEED Platform Documentation, Release 2.3.0

34 Chapter 4. Data Model

CHAPTER B

Mapping

This document describes the set of calls that occur from the web client or API down to the back-end for the process of
mapping.
An overview of the process is:

1. Import - A file is uploaded and saved in the database

2. Mapping - Mapping occurs on that file

3. Matching / Merging

4. Pairing

5.1 Import

From the web UlI, the import process invokes seed.views.main.save_raw_data to save the data. When the data is
done uploading, we need to know whether it is a Portfolio Manager file, so we can add metadata to the record in
the database. The end of the upload happens in seed.data_importer.views.DatalmportBackend.upload_complete or
seed.data_importer.views.handle_s3_upload_complete, depending on whether it is using a local file system or Amazon
S3-based backend. At this point, the request object has additional attributes for Portfolio Manager files. These are
saved in the model seed.data_importer.models.ImportFile.

5.2 Mapping

After the data is saved, the Ul invokes DataFileViewSet.mapping_suggestions to get the columns to display on the
mapping screen. This loads back the model that was mentioned above as an ImportFile instance, and then the
from_portfolio_manager property can be used to choose the branch of the code:

If it is a Portfolio Manager file the seed.common.mapper.get_pm_mapping method provides a high-level interface to
the Portfolio Manager mapping (see comments in the containing file, mapper.py), and the result is used to populate the
return value for this method, which goes back to the UI to display the mapping screen.

35

SEED Platform Documentation, Release 2.3.0

Otherwise the code does some auto-magical logic to try and infer the “correct” mapping.

5.3 Matching

Todo: document

5.4 Pairing

Todo: document

36

Chapter 5. Mapping

CHAPTER O

Modules

6.1 Audit Logs Package

6.1.1 Submodules

6.1.2 Models

class seed.audit_logs.models.AuditLog (*args, **kwargs)
Bases: django_extensions.db.models.TimeStampedModel

An audit log of events and notes. Inherits created and modified from TimeStampedModel

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

action
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

action_note
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

action_response
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

audit_type
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

content_object
Provide a generic many-to-one relation through the content_type and object_id fields.

37

SEED Platform Documentation, Release 2.3.0

This class also doubles as an accessor to the related object (similar to ForwardManyToOneDescriptor) by
adding itself as a model attribute.

content_type
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

content_type_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_audit_type_display (*moreargs, **morekwargs)
get_next_by created (*moreargs, **morekwargs)
get_next_by modified (*moreargs, **morekwargs)
get_previous_by_created (*moreargs, **morekwargs)

get_previous_by_ modified (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

object_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <seed.audit_logs.models.AuditLogManager object>

organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

save (*args, **kwargs)
Ensure that only notes are saved

to_dict ()
serializes an audit_log

user
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

38

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

user_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class seed.audit_logs.models.AuditLogManager
Bases: django.db.models.manager.Manager

ExpressionManager with update preventing the update of non-notes

get_queryset ()

log_action (request, conent_object, organization_id, action_note=None, audit_type=0)
use_for related_ fields = True

class seed.audit_logs.models.AuditLogQuerySet (model=None, query=None, using=None,

hints=None)
Bases: django.db.models.query.QuerySet

update (*args, **kwargs)
only notes should be updated, so filter out non-notes

6.1.3 Tests

class seed.audit_logs.tests.AuditLogModelTests (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()

test_audit ()
tests audit save

test_audit_save ()
audit_log LOG should not be able to save/update

test_audit_update ()
audit_log LOG should not be able to save/update

test_generic_relation ()
test CanonicalBuilding.audit_logs

test_get_all_audit_logs_for_an_org()
gets all audit logs for an org

test_model unicode_ ()
tests the AuditLog inst. str or unicode

test_note ()
tests note save

test_note_save ()
notes should be able to save/update

class seed.audit_logs.tests.AuditLogViewTests (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()

6.1. Audit Logs Package 39

SEED Platform Documentation, Release 2.3.0

test_create_note()
tests create_note

test_get_building_ logs ()
test the django view get_building_logs

test_update_note()
tests update_note

6.1.4 URLs

6.1.5 Views

seed.audit_logs.views.create_note (request, *args, **kwargs)
Retrieves logs for a building.

POST Expects the CanonicalBuildings’s id in the JSON payload as building_id. Expects an orga-
nization_id (to which project belongs) in the query string. Expects the action_note to be in the
JSON payload as action_note

Returns:

'audit_log' : {
'user': {
'first_name': user's firstname,
'last_name': user's last_name,
"id"': user's id,
'email': user's email address
b
'id': audit log's id,
'audit_type': 'Note',
'created': DateTime,
'modified': DateTime,
'action': method triggering log entry,
'action_response': response of action,
'action_note': the note body
'organization': {
'name': name of org,
'id': id of org
}I

'status': 'success'

seed.audit_logs.views.get_building logs (request, *args, **kwargs)
Retrieves logs for a building.

GET Expects the CanonicalBuildings’s id in the query string as building_id. Expects an organiza-
tion_id (to which project belongs) in the query string.

Returns:
'audit_logs' : [
{
'user': {

'first_name': user's firstname,
'last_name': user's last_name,
'id"': user's id,
'email': user's email address

by

40 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

'id': audit log's 1id,

'audit_type': 'Log' or 'Note',
'created': DateTime,
'modified': DateTime,
'action': method triggering log entry,
'action_response': response of action,
'action_note': the note body if Note or further description
'organization': {
'name': name of org,

'id': id of org

b
1,

'status': 'success'

seed.audit_logs.views.update_note (request, *args, **kwargs)
Retrieves logs for a building.

PUT Expects the CanonicalBuildings’s id in the JSON payload as building_id. Expects an organiza-
tion_id (to which project belongs) in the query string. Expects the action_note to be in the JSON
payload as action_note Expects the audit_log_id to be in the JSON payload as audit_log_id

Returns:

'audit_log' : {
'user': {
'first_name': user's firstname,
'last_name': user's last_name,
'id"': user's id,
'email': user's email address
b
'id': audit log's id,
'audit_type': 'Note',
'created': DateTime,
'modified': DateTime,
'action': method triggering log entry,
'action_response': response of action,
'action_note': the note body
'organization': {
'name': name of org,
'id': id of org
}I

'status': 'success'

6.2 Configuration

6.2.1 Submodules
6.2.2 Storage

6.2.3 Template Context

config.template_context.sentry_ js (request)

config.template_context.session_key (request)

6.2. Configuration 41

SEED Platform Documentation, Release 2.3.0

6.2.4 Tests

6.2.5 Utils

config.utils.de_camel_case (name)

6.2.6 Views

config.views.robots_txt (request, allow=False)

6.2.7 WSGI

WSGI config for config project.

This module contains the WSGI application used by Django’s development server and any production WSGI de-
ployments. It should expose a module-level variable named application. Django’s runserver and runfcgi
commands discover this application via the WSGI_APPLICATION setting.

Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole
Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce
WSGI middleware here, or combine a Django application with an application of another framework.

6.3 Data Package

6.3.1 Submodules
6.3.2 BEDES

6.3.3 Module contents
6.4 Data Importer Package

6.4.1 Submodules

6.4.2 Managers

class seed.data_importer.managers.NotDeletedManager
Bases: django.db.models.manager.Manager
get_queryset (*args, **kwargs)

use_for related_fields = True

42 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

6.4.3 Models
6.4.4 URLs

6.4.5 Utils

class seed.data_importer.utils.CoercionRobot
Bases: object

lookup_hash (uncoerced_value, destination_model, destination_field)
make_key (value, model, field)

seed.data_importer.utils.acquire_lock (name, expiration=None)
Tries to acquire a lock from the cache. Also sets the lock’s value to the current time, allowing us to see how
long it has been held.

Returns False if lock already belongs by another process.

seed.data_importer.utils.chunk_iterable (iterlist, chunk_size)
Breaks an iterable (e.g. list) into smaller chunks, returning a generator of the chunk.

seed.data_importer.utils.get_core_pk_column (table_column_mappings, primary_field)

seed.data_importer.utils.get_lock_time (name)
Examines a lock to see when it was acquired.

seed.data_importer.utils.release_lock (name)
Frees a lock.

6.4.6 Views

class seed.data_importer.views.ImportFileViewSet (**kwargs)
Bases: rest_framework.viewsets.ViewSet

authentication classes = (<class 'rest_framework.authentication.SessionAuthentication'

available_matches (request, *args, **kwargs)

data_quality_progress (request, *args, **kwargs)
Return the progress of the data quality check. — type:

status: required: true type: string description: either success or error
progress: type: integer description: status of background data quality task
parameter_strategy: replace parameters:
* name: pk description: Import file ID required: true paramType: path

destroy (request, *args, **kwargs)
Returns suggested mappings from an uploaded file’s headers to known data fields. — type:

status: required: true type: string description: Either success or error
parameter_strategy: replace parameters:
* name: pk description: import_file_id required: true paramType: path

* name: organization_id description: The organization_id for this user’s organization required: true
paramType: query

6.4. Data Importer Package 43

SEED Platform Documentation, Release 2.3.0

filtered_mapping results (request, *args, **kwargs)
Retrieves a paginated list of Properties and Tax Lots for an import file after mapping. — parame-
ter_strategy: replace parameters:

* name: pk description: Import File ID (Primary key) type: integer required: true paramType: path
response_serializer: MappingResultsResponseSerializer

first_five_rows (request, *args, **kwargs)
Retrieves the first five rows of an ImportFile. — type:

status: required: true type: string description: either success or error

first_five_rows: type: array of strings description: list of strings for each of the first five rows
for this import file

parameter_strategy: replace parameters:
* name: pk description: “Primary Key” required: true paramType: path

get_data_quality_results (request, *args, **kwargs)
Retrieve the details of the data quality check. — type:

status: required: true type: string description: either success or error
message: type: string description: additional information, if any
progress: type: integer description: integer percent of completion
data: type: JSON description: object describing the results of the data quality check
parameter_strategy: replace parameters:
* name: pk description: Import file ID required: true paramType: path

static has_coparent (state_id, inventory_type, fields=None)
Return the coparent of the current state id based on the inventory type. If fields are given (as a list), then it
will only return the fields specified of the state model object as a dictionary.

Parameters
* state_id - int, ID of PropertyState or TaxLotState
* inventory_type - string, either properties | taxlots
e fields - list, either None or list of fields to return
Returns dict or state object, If fields is not None then will return state_object

mapping_done (request, *args, **kwargs)
Tell the backend that the mapping is complete. — type:

status: required: true type: string description: either success or error
message: required: false type: string description: error message, if any
parameter_strategy: replace parameters:
* name: pk description: Import file ID required: true paramType: path

mapping_suggestions (request, *args, **kwargs)
Returns suggested mappings from an uploaded file’s headers to known data fields. — type:

status: required: true type: string description: Either success or error

suggested_column_mappings: required: true type: dictionary description: Dictionary where
(key, value) = (the column header from the file,

44 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

array of tuples (destination column, score))
building_columns: required: true type: array description: A list of all possible columns

building_column_types: required: true type: array description: A list of column types corre-
sponding to the building_columns array

parameter_strategy: replace parameters:
* name: pk description: import_file_id required: true paramType: path

* name: organization_id description: The organization_id for this user’s organization required: true
paramType: query

match (request, *args, **kwargs)

matching_ results (request, *args, **kwargs)
Retrieves the number of matched and unmatched properties & tax lots for a given ImportFile record.
Specifically for new imports

GET Expects import_file_id corresponding to the ImportFile in question.

Returns:

{
'status': 'success',
'properties’': {

'matched': Number of PropertyStates that have been matched,
'unmatched': Number of PropertyStates that are unmatched new imports
by
'tax_lots': {
'matched': Number of TaxLotStates that have been matched,
'unmatched': Number of TaxLotStates that are unmatched new imports

matching_status (request, *args, **kwargs)
Retrieves the number and ids of matched and unmatched properties & tax lots for a given ImportFile
record. Specifically for hand-matching

GET Expects import_file_id corresponding to the ImportFile in question.

Returns:

{
'status': 'success',
'properties': {

'matched': Number of PropertyStates that have been matched,
'matched_ids': Array of matched PropertyState ids,
'unmatched': Number of PropertyStates that are unmatched records,
'unmatched_ids': Array of unmatched PropertyState ids

}I

'tax_lots': {
'matched': Number of TaxLotStates that have been matched,
'matched_ids': Array of matched TaxLotState ids,
'unmatched': Number of TaxLotStates that are unmatched records,
'unmatched_ids': Array of unmatched TaxLotState ids

perform_mapping (request, *args, **kwargs)
Starts a background task to convert imported raw data into PropertyState and TaxLotState, using user’s

6.4. Data Importer Package 45

SEED Platform Documentation, Release 2.3.0

column mappings. — type:

status: required: true type: string description: either success or error

progress_key: type: integer description: ID of background job, for retrieving job progress

parameter_strategy: replace parameters:
* name: pk description: Import file ID required: true paramType: path
queryset
raise_exception = True

raw_column_names (request, *args, **kwargs)
Retrieves a list of all column names from an ImportFile. — type:

status: required: true type: string description: either success or error

raw_columns: type: array of strings description: list of strings of the header row of the Import-

File
parameter_strategy: replace parameters:
* name: pk description: “Primary Key” required: true paramType: path

retrieve (request, *args, **kwargs)
Retrieves details about an ImportFile. — type:

status: required: true type: string description: either success or error
import_file: type: ImportFile structure description: full detail of import file
parameter_strategy: replace parameters:
* name: pk description: “Primary Key” required: true paramType: path

save_column_mappings (request, *args, **kwargs)

Saves the mappings between the raw headers of an ImportFile and the destination fields in the

to_table_name model which should be either PropertyState or TaxLotState

Valid source_type values are found in seed.models.SEED_DATA_SOURCES

Payload:
{
"import_file_id": ID of the ImportFile record,
"mappings": [
{
'from_field': 'eui', # raw field in import file
'from_units': 'kBtu/ftxx2/year', # pint-parseable units, optional
'to_field': 'energy_use_intensity',
'to_table_name': 'PropertyState',
1y
{
'from_field': 'gfa',
'from_units': 'ftxx2', # pint-parseable units, optional
'to_field': 'gross_floor_area',
'to_table_name': 'PropertyState',
}
]
}
Returns:

Chapter 6

. Modules

SEED Platform Documentation, Release 2.3.0

{'status': 'success'}

save_raw_data (request, *args, **kwargs)
Starts a background task to import raw data from an ImportFile into PropertyState objects as extra_data. If

the cycle_id is set to year_ending then the cycle ID will be set to the year_ending column for each record
in the uploaded file. Note that the year_ending flag is not yet enabled. — type:

status: required: true type: string description: either success or error
message: required: false type: string description: error message, if any
progress_Kkey: type: integer description: ID of background job, for retrieving job progress
parameter_strategy: replace parameters:
* name: pk description: Import file ID required: true paramType: path

* name: cycle_id description: The ID of the cycle or the string “year_ending” paramType: string re-
quired: true

start_system_matching (request, *args, **kwargs)
Starts a background task to attempt automatic matching between buildings in an ImportFile with other
existing buildings within the same org. — type:

status: required: true type: string description: either success or error
progress_key: type: integer description: ID of background job, for retrieving job progress
parameter_strategy: replace parameters:
* name: pk description: Import file ID required: true paramType: path
unmatch (request, *args, **kwargs)

class seed.data_importer.views.LocalUploaderViewSet (**kwargs)
Bases: rest_framework.viewsets.ViewSet

Endpoint to upload data files to, if uploading to local file storage. Valid source_type values are found in seed.
models.SEED_DATA_SOURCES

Returns:

{

'success': True,
"import_file_id': The ID of the newly-uploaded ImportFile

create (request, *args, **kwargs)
Upload a new file to an import_record. This is a multipart/form upload. — parameters:

* name: import_record description: the ID of the ImportRecord to associate this file with. required:
true paramType: body

* name: source_type description: the type of file (e.g. ‘Portfolio Raw’ or ‘Assessed Raw’) required:
false paramType: body

* name: source_program_version description: the version of the file as related to the source_type re-
quired: false paramType: body

* name: file or qqfile description: In-memory file object required: true paramType: Multipart

create_from pm_import (request, *args, **kwargs)
Create an import_record from a PM import request. This allows the PM import workflow to be treated
essentially the same as a standard file upload — parameters:

6.4. Data Importer Package 47

SEED Platform Documentation, Release 2.3.0

* name: import_record description: the ID of the ImportRecord to associate this file with. required:
true paramType: body

* name: properties description: In-memory list of properties from PM import required: true paramType:
body

class seed.data_importer.views.MappingResultsPayloadSerializer (instance=None,
data=<class
rest_framework.fields.empty>,

**kwargs)
Bases: rest_framework.serializers.Serializer

filter_params = <django.contrib.postgres.fields. jsonb.JSONField>

class seed.data_importer.views.MappingResultsPropertySerializer (instance=None,
data=<class
rest_framework.fields.empty>,

**kwargs)
Bases: rest_framework.serializers.Serializer

class seed.data_importer.views.MappingResultsResponseSerializer (instance=None,
data=<class
rest_framework.fields.empty>,

**kwargs)
Bases: rest_framework.serializers.Serializer

class seed.data_importer.views.MappingResultsTaxLotSerializer (instance=None,
data=<class
rest_framework.fields.empty>,

**kwargs)
Bases: rest_framework.serializers.Serializer

seed.data_importer.views.get_upload_details (request, *args, **kwargs)
Retrieves details about how to upload files to this instance.

Returns:

If S3 mode:

'upload_mode': 'S3',
'upload_complete': A url to notify that upload is complete,
'signature': The url to post file details to for auth to upload to S3.

If local file system mode:
{

'upload_mode': 'filesystem',
'upload_path': The url to POST files to (see local_uploader)

seed.data_importer.views.handle_s3_upload_complete (request, *args, **kwargs)
Notify the system that an upload to S3 has been completed. This is a necessary step after uploading to S3 or the
SEED instance will not be aware the file exists.

Valid source_type values are found in seed.models.SEED_DATA_SOURCES
GET Expects the following in the query string:
key: The full path to the file, within the S3 bucket. E.g. data_importer/buildings.csv

48 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

source_type: The source of the file. E.g. ‘Assessed Raw’ or ‘Portfolio Raw’
source_program: Optional value from common.mapper.Programs source_version: e.g. “4.1”
import_record: The ID of the ImportRecord this file belongs to.

Returns:

'success': True,
"import_file_id': The ID of the newly-created ImportFile object.

seed.data_importer.views.sign_policy_document (request, *args, **kwargs)

Sign and return the policy document for a simple upload. http://aws.amazon.com/articles/1434/
#signyours3postform
Payload:

{

"expiration": ISO-encoded timestamp for when signature should expire,

e.g. "2014-07-16T00:20:56.2772",
"conditions":
[
{"acl":"private"},

{"bucket": The name of the bucket from get_upload details},
{"Content-Type":"text/csv"},
{"success_action_status":"200"},
{"key": filename of upload, prefixed with 'data_imports/',
suffixed with a unique timestamp.
e.g. 'data_imports/my_buildings.csv.1405469756"'},
{"x—amz-meta-category":"data_imports"},
{"x—amz-meta-ggfilename": original filename}

Returns:

"policy": A hash of the policy document. Using during upload to S3.
"signature": A signature of the policy document. Also used during upload to_
‘HS?) .
}

6.4. Data Importer Package 49

http://aws.amazon.com/articles/1434/#signyours3postform
http://aws.amazon.com/articles/1434/#signyours3postform

SEED Platform Documentation, Release 2.3.0

6.4.7 Module contents

6.5 Features Package

6.5.1 Submodules

6.5.2 Module contents
6.6 Green Button Package

6.6.1 Subpackages

Green Button Tests Package

Submodules
XML Importer Tests

Module contents

6.6.2 Submodules

6.6.3 seed.green_button.xml_importer module

seed.green_button.xml_importer.as_collection (val)

Takes a value, returns that value if it is not a string and is an Iterable, and returns a list containing that value if it

is not an Iterable or if it is a string. Returns None when val is None.

Parameters val — any value

Returns list containing val or val if it is Iterable and not a string.

seed.green_button.xml_importer.building_data (xmi_data)
Extracts information about a building from a Green Button XML file.

Parameters xml_data - dictionary returned by xmltodict.parse when called on the contents of a

Green Button XML file

Returns dictionary

¢ building information for a Green Button XML file

* information describing the meter used for collection

* list of time series meter reading data

seed.green_button.xml_importer.create_models (data, import_file, cycle)

Create a PropertyState and a Meter. Then, create TimeSeries models for each meter reading in data.

Parameters

* data — dict, building data from a Green Button XML file from xml_importer.building_data

* import_file - ImportFile, reference to Green Button XML file

50

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

* cycle - Cycle, the cycle from which the property view will be attached
Returns PropertyState

seed.green_button.xml_importer.energy_type (service_category)
Returns the seed model energy type corresponding to the green button service category.

Parameters service_category — int that is a green button service_category (string args will
be converted to integers)

Returns int in Meter. ENERGY_TYPES

seed.green_button.xml_importer.energy_units (uom)
Returns the seed model energy unit corresponding to the green button uom.

Parameters uom — int that is the green button uom number corresponding to the energy units sup-
ported by the green button schema (string args will be converted to integers)

Returns int in seed.models. ENERGY_UNITS

seed.green_button.xml_importer.import_xml (import_file, cycle)
Given an import_file referencing a raw Green Button XML file, extracts building and time series information
from the file and constructs required database models.

Parameters

* import_file — aseed.models.ImportFile instance representing a Green Button XML file
that has been previously uploaded

* cycle — which cycle to import the results
Returns PropertyView, attached to cycle

seed.green_button.xml_importer.interval_block_data (ib_xml_data)
Takes a dictionary containing the contents of an IntervalBlock node from a Green Button XML file and returns
a dictionary containing the start_time of the time series collection, the duration of the collection, and a list of
readings containing the time series data from a meter.

Parameters ib_xml_data — dictionary of the contents of an IntervalBlock from a Green Button
XML file

Returns dictionary containing meta data about an entire collection period and a list of the specific
meter readings

seed.green_button.xml_importer.interval_data (reading_xml_data)
Takes a dictionary representing the contents of an IntervalReading XML node and pulls out data for a single
time series reading. The dictionary will be a sub-dictionary of the dictionary returned by xmltodict.parse when
called on a Green Button XML file. Returns a flat dictionary containing the interval data.

Parameters reading xml_data - dictionary of IntervalReading XML node content in format
specified by the xmltodict library.

Returns dictionary representing a time series reading with keys ‘cost’, ‘value’, ‘start_time’, and
‘duration’.

seed.green_button.xml_importer.meter_data (raw_meter_meta)
Takes a dictionary representing the contents of the entry node in a Green Button XML file that specifies the meta
data about the meter that was used to record time series data for that file. Returns a flat dictionary containing
the meter meta data.

Parameters raw_meter_meta — dictionary of the contents of the meter specification entry node
in a Green Button XML file

6.6. Green Button Package 51

SEED Platform Documentation, Release 2.3.0

Returns dictionary containing information about a meter with keys ‘currency’,
‘power_of_ten_multiplier’, and ‘uom’

6.6.4 Module contents
6.7 Landing Package

6.7.1 Subpackages
seed.landing.management package

Subpackages

Landing Management Package
Submodules

Update EULA

class seed.landing.management.commands.update_eula.Command (stdout=None,
stderr=None,

no_color=Fualse)
Bases: django.core.management .base.BaseCommand

handle (*args, **options)

help = 'Update the Terms of Service with a new HTML file'

Module contents

Module contents

6.7.2 Submodules

6.7.3 Forms

class seed.landing.forms.LoginForm (data=None, files=None, auto_id=u’id_%s’, pre-
fix=None, initial=None, error_class=<class
"django.forms.utils.ErrorList’>, label_suffix=None,
empty_permitted=False, field_order=None,

use_required_attribute=None, renderer=None)
Bases: django.forms.forms.Form

base_fields = {'email': <django.forms.fields.EmailField object at 0x7f16c765cal0l>,
declared fields = {'email': <django.forms.fields.EmailField object at 0x7f16c765cal0>
media

52 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

6.7.4 Models

class seed.landing.models.SEEDUser (*args, **kwargs)
Bases: django.contrib.auth.base_user.AbstractBaseUser, django.contrib.auth.
models.PermissionsMixin

An abstract base class implementing a fully featured User model with admin-compliant permissions.
Username, password and email are required. Other fields are optional.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

REQUIRED_FIELDS = ['email']

USERNAME FIELD = 'username'

api_key
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

auditlog_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

buildingsnapshot_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

columnmapping_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

6.7. Landing Package 53

SEED Platform Documentation, Release 2.3.0

cycle_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

date_joined
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

default_building_detail_ custom_columns
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

default custom_ columns
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

default_organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

default_organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

email
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

email_user (subject, message, from_email=None)
Sends an email to this User.

first_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

generate_key ()
Creates and sets an API key for this user. Adapted from tastypie:

https://github.com/toastdriven/django-tastypie/blob/master/tastypie/models.py#L47 # noga
get_absolute_url ()

get_full name ()
Returns the first_name plus the last_name, with a space in between.

get_next_by date_joined (*moreargs, **morekwargs)

54

Chapter 6. Modules

https://github.com/toastdriven/django-tastypie/blob/master/tastypie/models.py#L47

SEED Platform Documentation, Release 2.3.0

get_previous_by_ date_joined (*moreargs, **morekwargs)

get_short_name ()
Returns the short name for the user.

greenassessmentpropertyauditlog_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

groups
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model):
toppings = ManyToManyField (Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

importrecord_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

is_staff
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

last _modified user
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

6.7.

Landing Package 55

SEED Platform Documentation, Release 2.3.0

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

last_name

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

logentry_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

modified_ import_records

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

notes

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

objects = <django.contrib.auth.models.UserManager object>

organizationuser_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

56

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

orgs
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField (Topping,

related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by

create_forward_many_to_many_manager () defined below.

classmethod process_header_request (request)
Process the header string to return the user if it is a valid user.

Parameters request — object, request object with HTTP Authorization
Returns User object

project_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :

parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by

create_forward_many_to_many_manager () defined below.

projectpropertyview_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent,

related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by

create_forward_many_to_many_manager () defined below.

projecttaxlotview_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :

parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by

create_forward_many_to_many_manager () defined below.

save (*args, **kwargs)
Ensure that email and username are synced.

6.7.

Landing Package

57

SEED Platform Documentation, Release 2.3.0

show_shared_buildings
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

user_ permissions
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField (Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

username

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.7.5 Tests

class seed.landing.tests.UserLoginTest (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()

test_simple_login()
Happy path login with no ToS.

6.7.6 URLs
6.7.7 Views

seed.landing.views.landing_ page (request)
seed.landing.views.login_view (request)

Standard Django login, with additions: Lowercase the login email (username) Check user has accepted ToS,
if any.

seed.landing.views.password_reset (request)
seed.landing.views.password_reset_complete (request)
seed.landing.views.password_reset_confirm (request, uidb64=None, token=None)
seed.landing.views.password_ reset_done (request)
seed.landing.views.password_set (request, uidb64=None, token=None)

seed.landing.views.signup (request, uidb64=None, token=None)

58 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

6.7.8 Module contents

6.8 Library Packages

6.8.1 Submodules

6.8.2 Module contents
6.9 Mapping Package

6.9.1 Submodules
6.9.2 seed.mappings.mapper module
6.9.3 seed.mappings.seed_mappings module

6.9.4 Module contents
6.10 Managers Package

6.10.1 Subpackages

Manager Tests Package

Submodules
Test JSON Manager

Module contents

6.10.2 Submodules
6.10.3 JSON

class seed.managers. json.JsonManager
Bases: django.db.models.manager.Manager

get_dqueryset ()

class seed.managers. json.JsonQuerySet (model=None, query=None, using=None,

hints=None)
Bases: django.db.models.query.QuerySet

PRIMARY = 'extra data'
TABLE = 'seed_buildingsnapshot'

json_order_by (key, order_by, order_by_rev=False, unit=None)

6.8. Library Packages 59

SEED Platform Documentation, Release 2.3.0

6.10.4 Module contents

6.11 Models

6.11.1 Submodules
6.11.2 AuditLog

6.11.3 Columns

class seed.models.columns.Column (*args, **kwargs)
Bases: django.db.models.base.Model

The name of a column for a given organization.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

SHARED_FIELD_TYPES = ((0, 'None'), (1, 'Public'))
SHARED NONE = 0
SHARED PUBLIC = 1

column_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

static create_mappings (mappings, organization, user, import_file_id=None)
Create the mappings for an organization and a user based on a simple array of array object.

Parameters
* mappings — dict, dictionary containing mapping information
* organization - inst, organization object
* user — inst, User object

e import_file_id - integer, If passed, will cache the column mappings data into the
import_file_id object.

:return Boolean, True is data are saved in the ColumnMapping table in the database

static create_mappings_from_ file (filename, organization, user, import_file_id=None)
Load the mappings in from a file in a very specific file format. The columns in the file must be:

1. raw field
. table name

. field name

2
3
4. field display name
5. field data type

6

. field unit type

Parameters

60 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

* filename - string, absolute path and name of file to load
* organization - id, organization id
* user —id, user id

e import_file_id - Integer, If passed, will cache the column mappings data into the
import_file_id object.

Returns ColumnMapping, True
static delete_all (organization)

Delete all the columns for an organization. Note that this will invalidate all the data that is in the extra_data
fields of the inventory and is irreversible.

Parameters organization — instance, Organization
Returns [int, int] Number of columns, column_mappings records that were deleted

enum
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

enum_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_shared_field_type_display (*moreargs, **morekwargs)
id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is

executed.

import_file
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

import_file_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

is _extra data
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

mapped_mappings
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

6.11. Models 61

SEED Platform Documentation, Release 2.3.0

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

objects = <django.db.models.manager.Manager object>

organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

raw_mappings
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

static retrieve_all (org_id, inventory_type, only_used)
Retrieve all the columns for an organization. First, grab the columns from the
VIEW_COLUMNS_PROPERTY schema which defines the database columns with added data for # var-
ious reasons. Then query the database for all extra data columns and add in the # data as appropriate
ensuring that duplicates that are taken care of (albeit crudely).

Note: this method should retrieve the columns from MappingData and then have a method # to return
for JavaScript (i.e. UI-Grid) or native (standard JSON)

Parameters

* org_id - Organization ID

* inventory_type — Inventory Type (propertyltaxlot)

* only used - View only the used columns that exist in the Column’s table
Returns dict

static retrieve_db_ fields ()
return the fields in the database regardless of properties or taxlots

[“address_line_17, “gross_floor_area”, ...] :return: list

62

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

static retrieve_db_types()
return the data types for the database columns in the format of:

Example: {

“field_name”: “data_type”, “field_name_2": “data_type_2”, “address_line_1"": “string”,

Returns dict

static save_column_names (model_obj)
Save unique column names for extra_data in this organization.

This is a record of all the extra_data keys we have ever seen for a particular organization.
Parameters model_ob3j — model_obj instance (either PropertyState or TaxLotState).

shared_field type
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

table_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

to_dict ()
Convert the column object to a dictionary

Returns dict

unit
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

unit_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

units_pint
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class seed.models.columns.ColumnMapping (*args, **kwargs)
Bases: django.db.models.base.Model

Stores previous user-defined column mapping.

We’ll pull from this when pulling from varied, dynamic source data to present the user with previous choices
for that same field in subsequent data loads.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

6.11. Models 63

SEED Platform Documentation, Release 2.3.0

column_mapped
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

column_raw
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

static delete_mappings (organization)
Delete all the mappings for an organization. Note that this will erase all the mappings so if a user views
an existing Data Mapping the mappings will not show up as the actual mapping, rather, it will show up as
new suggested mappings

Parameters organization — instance, Organization
Returns int, Number of records that were deleted

static get_column_mappings (organization)
Returns dict of all the column mappings for an Organization’s given source type

Parameters organization — instance, Organization.
Returns dict, list of dict.

Use this when actually performing mapping between data sources, but only call it after all of the mappings
have been saved to the ColumnMapping table.

static get_column_mappings_by_ table_name (organization)
Breaks up the get_column_mappings into another layer to provide access by the table name as a key.

Parameters organization - instance, Organization
Returns dict
get_source_type_display (*moreargs, **morekwargs)
id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is

executed.

is_concatenated ()
Returns True if the ColumnMapping represents the concatenation of imported column names; else returns
False.

64 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

is _direct ()
Returns True if the ColumnMapping is a direct mapping from imported column name to either a BEDES
column or a previously imported column. Returns False if the ColumnMapping represents a concatenation.

objects = <django.db.models.manager.Manager object>

remove_duplicates (gs, m2m_type=’"column_raw’)
Remove any other Column Mappings that use these columns.

Parameters
* gs — queryset of Column. These are the Columns in a M2M with this instance.

* m2m_type — str, the name of the field we’re comparing against. Defaults to ‘col-
umn_raw’.

save (*args, **kwargs)
Overrides default model save to eliminate duplicate mappings.

Warning: Other column mappings which have the same raw_columns in them will be removed!

source_type
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

super_organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

super_organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

to_dict ()
Convert the ColumnMapping object to a dictionary

Returns dict

user
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

user_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.11. Models 65

SEED Platform Documentation, Release 2.3.0

seed.models.columns.get_column_mapping (raw_column, organization,

attr_name="column_mapped’)
Find the ColumnMapping objects that exist in the database from a raw_column

Parameters
e raw_column — str, the column name of the raw data.
* organization - Organization inst.

* attr_ name - str, name of attribute on ColumnMapping to pull out. whether we’re looking
at a mapping from the perspective of a raw_column (like we do when creating a mapping),
or mapped_column, (like when we’re applying that mapping).

Returns list of mapped items, float representation of confidence.

6.11.4 Cycles

class seed.models.cycles.Cycle (id, organization, user, name, start, end, created)
Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

created
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

end
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_next_by_ created (*moreargs, **morekwargs)

get_next_by_end (*moreargs, **morekwargs)

get_next_by start (*moreargs, **morekwargs)

classmethod get_or_ create_default (organization)

get_previous_by_created (*moreargs, **morekwargs)

get_previous_by end (*moreargs, **morekwargs)

get_previous_by_start (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

importfile_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

66 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

name

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

organization

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

propertyview_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

start

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

taxlotproperty_ set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisa ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

taxlotview_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

6.11. Models 67

SEED Platform Documentation, Release 2.3.0

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

user
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

user_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.11.5 Joins

6.11.6 Generic Models

class seed.models.models.AttributeOption (*args, **kwargs)

Bases: django.db.models.base.Model
Holds a single conflicting value for a BuildingSnapshot attribute.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

building variant
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

building variant_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_value_source_display (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

value
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

68

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

value_source
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class seed.models.models.BuildingAttributeVariant (*args, **kwargs)
Bases: django.db.models.base.Model

Place to keep the options of BuildingSnapshot attribute variants.

When we want to select which source’s values should sit in the Canonical Building’s position, we need to draw
from a set of options determined during the matching phase. We should only have one ‘Variant’ container per
field_name, per snapshot.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

building_snapshot
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

building_snapshot_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

field name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

options
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

class seed.models.models.Compliance (id, created, modified, compliance_type, start_date,

end_date, deadline_date, project)
Bases: django_extensions.db.models.TimeStampedModel

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

6.11. Models 69

SEED Platform Documentation, Release 2.3.0

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

compliance_type
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

deadline_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

end date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_compliance_type_display (*moreargs, **morekwargs)

get_next_by created (*moreargs, **morekwargs)

get_next_by modified (*moreargs, **morekwargs)

get_previous_by_created (*moreargs, **morekwargs)

get_previous_by_ modified (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

project
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

project_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

start_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

to_dict ()

class seed.models.models.CustomBuildingHeaders (*args, **kwargs)
Bases: django.db.models.base.Model

Specify custom building header mapping for display.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

70 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

building_headers
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <seed.managers. json.JsonManager object>

super_organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent

ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

super_organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class seed.models.models.Enum (*args, **kwargs)

Bases: django.db.models.base.Model
Defines a set of enumerated types for a column.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

column_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

enum_name

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

enum_values
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField (Topping, related_name='pizzas')

6.11. Models 71

SEED Platform Documentation, Release 2.3.0

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

class seed.models.models.EnumValue (*args, **kwargs)

Bases: django.db.models.base.Model
Individual Enumerated Type values.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

value_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

values
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

class seed.models.models.StatusLabel (id, created, modified, name, color, super_organization)

Bases: django_extensions.db.models.TimeStampedModel

BLUE_CHOICE = 'blue'’

COLOR_CHOICES = (('red', u'red'), ('blue', u'blue'), ('light blue', u'light blue'), ("

DEFAULT LABELS = ['Residential', 'Non-Residential', 'Violation', 'Compliant',

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

GRAY_ CHOICE = 'gray'
GREEN_CHOICE = 'green'
LIGHT_BLUE_CHOICE = 'light blue'

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

72

Chapter 6. Modules

'Missing

SEED Platform Documentation, Release 2.3.0

ORANGE_CHOICE = 'orange'
RED CHOICE = 'red'
WHITE CHOICE = 'white'

canonicalbuilding_ set
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

color
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_color_display (*moreargs, **morekwargs)
get_next_by_ created (*moreargs, **morekwargs)
get_next_by modified (*moreargs, **morekwargs)
get_previous_by_ created (*moreargs, **morekwargs)

get_previous_by modified (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

property_set
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

rule_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

6.11. Models 73

SEED Platform Documentation, Release 2.3.0

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

super_organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

super_organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

taxlot_set
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField (Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

to_dict ()

class seed.models.models.Unit (*args, **kwargs)
Bases: django.db.models.base.Model

Unit of measure for a Column Value.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

column_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

get_unit_type_display (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

74 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

objects = <django.db.models.manager.Manager object>

unit_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

unit_type
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

seed.models.models.get_ancestors (building)
gets all the non-raw, non-composite ancestors of a building

Recursive function to traverse the tree upward.
Parameters building — BuildingSnapshot inst.

Returns list of BuildingSnapshot inst., ancestors of building

source_type {
2: ASSESSED_BS,
3: PORTFOLIO_BRS,
4: COMPOSITE_BS,
6: GREEN_BUTTON_BS

6.11.7 Projects

class seed.models.projects.Project (id, created, modified, name, slug, owner, last_modified_by,

super_organization, description, status)
Bases: django_extensions.db.models.TimeStampedModel

ACTIVE_STATUS =1

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

INACTIVE_STATUS = 0

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

PROJECT_NAME_MAX LENGTH = 255
STATUS_CHOICES = ((0, u'Inactive'), (1, u'Active'))
adding buildings_status_percentage_cache_key

compliance_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

6.11. Models 75

SEED Platform Documentation, Release 2.3.0

description
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_compliance ()

get_next_by created (*moreargs, **morekwargs)

get_next_by modified (*moreargs, **morekwargs)

get_previous_by_created (*moreargs, **morekwargs)

get_previous_by modified (*moreargs, **morekwargs)

get_status_display (*moreargs, **morekwargs)

has_compliance

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

last_modified by
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

last_modified by id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

organization
For compliance with organization names in new data model.

owner
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

owner_ id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

project_property views
Accessor to the related objects manager on the reverse side of a many-to-one relation.

76 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

project_taxlot_views
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

property_ count

property_views
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings ManyToManyField (Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

removing buildings_status_percentage_ cache_key

slug

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

status
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

super_organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

super_organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.11. Models 77

SEED Platform Documentation, Release 2.3.0

taxlot_count

taxlot_views
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model):
toppings = ManyToManyField (Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

to_dict ()

class seed.models.projects.ProjectPropertyView (id, created, modified, property_view,
project, compliant, approved_date, ap-

prover)
Bases: django_extensions.db.models.TimeStampedModel

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

approved_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

approver
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

approver_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

compliant
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_next_by_ created (*moreargs, **morekwargs)
get_next_by modified (*moreargs, **morekwargs)
get_previous_by_ created (*moreargs, **morekwargs)
get_previous_by modified (*moreargs, **morekwargs)
id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is

executed.

objects = <django.db.models.manager.Manager object>

78 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

project
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

project_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

property_view
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

property_ view_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class seed.models.projects.ProjectTaxLotView (id, created, modified, taxlot_view, project,

compliant, approved_date, approver)
Bases: django_extensions.db.models.TimeStampedModel

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

approved_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

approver
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

approver_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

compliant
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.11. Models 79

SEED Platform Documentation, Release 2.3.0

get_next_by created (*moreargs, **morekwargs)

get_next_by modified (*moreargs, **morekwargs)

get_previous_by_created (*moreargs, **morekwargs)

get_previous_by modified (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

project
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

project_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

taxlot_view
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

taxlot_view_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.11.8 Properties
class seed.models.properties.Property (*args, **kwargs)
Bases: django.db.models.base.Model

The Property is the parent property that ties together all the views of the property. For example, if a building has
multiple changes overtime, then this Property will always remain the same. The PropertyView will point to the
unchanged property as the PropertyState and Property view are updated.

If the property can be a campus. The property can also reference a parent property.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

80 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

campus
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

created
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_next_by_ created (*moreargs, **morekwargs)
get_next_by_ updated (*moreargs, **morekwargs)
get_previous_by_ created (*moreargs, **morekwargs)

get_previous_by_ updated (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

labels

Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

objects = <django.db.models.manager.Manager object>

organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent_property
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

6.11. Models 81

SEED Platform Documentation, Release 2.3.0

parent_property_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

property_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

updated
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

views
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

class seed.models.properties.PropertyAuditlog (id, organization, parentl, parent2, par-
ent_statel, parent_state2, state, view,
name, description, import_filename,

record_type, created)
Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

created
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

description
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_record_type_display (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

82 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

import_filename
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parentl
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

parentl_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent2
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

parent2_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent_statel
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

6.11. Models 83

SEED Platform Documentation, Release 2.3.0

class Child (Model) :
parent ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

parent_statel_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent_state2

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

parent_state2_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

propertyauditlog parentl
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

propertyauditlog parent2
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

record_type

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

state

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

84 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

state_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

view
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

view id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class seed.models.properties.PropertyState (*args, **kwargs)
Bases: django.db.models.base.Model

Store a single property. This contains all the state information about the property

ANALYSIS_STATE_COMPLETED = 2

ANALYSIS_STATE_FAILED = 3

ANALYSIS_STATE_NOT_STARTED = 0

ANALYSIS STATE_QUEUED = 4

ANALYSIS_ STATE_STARTED = 1

ANALYSIS_STATE_TYPES = ((0, u'Not Started'), (4, u'Queued'), (1, u'Started'), (2, u'Co

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

address_line_ 1
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

address_line_ 2
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

analysis_end_time
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

analysis_start_time
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.11. Models 85

SEED Platform Documentation, Release 2.3.0

analysis_state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

analysis_state_message
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

building certification
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

building_count
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

building files
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

city
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

clean()

conditioned floor area
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

conditioned floor_ area_pint
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

confidence
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod coparent (state_id)
Return the coparent of the PropertyState. This will query the Property AuditLog table to determine if there
is a coparent and return it if it is found. The state_id needs to be the base ID of when the original record
was imported

Parameters state_id - integer, state id to find coparent.
Returns dict

custom_id 1
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

86

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

data_state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

energy_alerts
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

energy_score
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

extra_data
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

generation_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_analysis_state_display (*moreargs, **morekwargs)
get_data_state_display (*moreargs, **morekwargs)
get_merge_state_display (*moreargs, **morekwargs)

gross_floor_area
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

gross_floor_area_pint
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

history ()
Return the history of the property state by parsing through the auditlog. Returns only the ids of the parent
states and some descriptions.

master / / parent] parent2

In the records, parent2 is most recent, so make sure to navigate parent two first since we are returning the
data in reverse over (that is most recent changes first)

Returns list, history as a list, and the master record

home_energy_ score_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

import_file
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

6.11. Models 87

SEED Platform Documentation, Release 2.3.0

import_file_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

jurisdiction_property id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

lot_number
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

measure_set
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

measures
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

classmethod merge_relationships (merged_state, statel, state2)
Merge together the old relationships with the new.

merge_state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

normalized address
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

occupied_floor_ area
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

occupied_floor_area_ pint
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

88

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

owner

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

owner_address

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

owner_city state

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

owner_email

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

owner_postal_code

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

owner_telephone

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent_statel

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

parent_state2

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

6.11. Models 89

SEED Platform Documentation, Release 2.3.0

pm_parent_property_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

pm_property id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

postal_code
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

promote (cycle, property_id=None)
Promote the PropertyState to the view table for the given cycle

Args: cycle: Cycle to assign the view property_id: Optional ID of a canonical property model object to
retain instead of creating a new property

Returns: The resulting Property View (note that it is not returning the PropertyState)

property name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

property_ notes
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

property type
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

propertyauditlog_state
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

propertymeasure_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

propertyview_set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

90 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

recent_sale_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

release_date
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

save (*args, **kwargs)

scenarios
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

simulation
Accessor to the related object on the reverse side of a one-to-one relation.

In the example:

class Restaurant (Model) :
place = OneToOneField(Place, related_name='restaurant')

place.restaurant isa ReverseOneToOneDescriptor instance.

site_eui
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

site_eui_modeled
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

site_eui_pint
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

site_eui_weather normalized
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

site_eui_weather_normalized pint
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

6.11.

Models 91

SEED Platform Documentation, Release 2.3.0

source_eui
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

source_eui_modeled
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

source_eui_pint
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

source_eui_weather normalized
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

source_eui_weather normalized pint
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

source_type
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

space_alerts
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

to_dict (fields=None, include_related_data=True)
Returns a dict version of the PropertyState, either with all fields or masked to just those requested.

ubid
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

use_description
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

year_built
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

year_ending
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class seed.models.properties.PropertyView (*args, **kwargs)
Bases: django.db.models.base.Model

Similar to the old world of canonical building.

A PropertyView contains a reference to a property (which should not change) and to a cycle (time period), and
a state (characteristics).

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

92 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

cycle
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

cycle_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

gapauditlog_view
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

greenassessmentproperty_ set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

import_filename
Get the import file name form the audit logs

initialize_audit_logs (**kwargs)

meters
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

6.11. Models 93

SEED Platform Documentation, Release 2.3.0

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

notes

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

objects = <django.db.models.manager.Manager object>

project_property views

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

project_set

Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField (Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

property

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

property_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

propertyauditlog_view

Accessor to the related objects manager on the reverse side of a many-to-one relation.

94

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

state
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

state_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

tax lot_states|()
Return a list of TaxLotStates associated with this Property View and Cycle

Returns list of TaxLotStates

tax_lot_views ()
Return a list of TaxLotViews that are associated with this Property View and Cycle

Returns list of TaxLotViews

taxlotproperty_ set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

seed.models.properties.post_save_property_ view (sender, **kwargs)
When changing/saving the Property View, go ahead and touch the Property (if linked) so that the record receives
an updated datetime

seed.models.properties.pre_delete_state (sender, **kwargs)

6.11.9 TaxLots

class seed.models.tax_lots.TaxLot (id, organization, created, updated)
Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

6.11. Models 95

SEED Platform Documentation, Release 2.3.0

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

created
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_next_by created (*moreargs, **morekwargs)
get_next_by_ updated (*moreargs, **morekwargs)
get_previous_by created (*moreargs, **morekwargs)

get_previous_by_ updated (*moreargs, **morekwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

labels

Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

objects = <django.db.models.manager.Manager object>

organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

updated
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

views
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

96 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

class seed.models.tax_lots.TaxLotAuditLog (id, organization, parentl, parent2, par-
ent_statel, parent_state2, state, view, name,
description, import_filename, record_type,
created)
Bases: django.db.models.base.Model
exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

created
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

description
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_record_type_display (*moreargs, **morekwargs)
id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is

executed.

import_filename
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parentl
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

6.11. Models 97

SEED Platform Documentation, Release 2.3.0

child.parent isaForwardManyToOneDescriptor instance.

parentl_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent2
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

parent2_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent_statel
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

parent_statel_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent_state2
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

parent_state2_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

record_type
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

state
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

98 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

state_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

taxlotauditlog_parentl
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

taxlotauditlog_parent2
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

view
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

view id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class seed.models.tax_lots.TaxLotState (id, confidence, import_file, organization, data_state,
merge_state, custom_id_I, jurisdiction_tax_lot_id,
block_number, district, address_line_I, ad-
dress_line_2, normalized_address, city, state,

postal_code, number_properties, extra_data)
Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

6.11. Models 99

SEED Platform Documentation, Release 2.3.0

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

address_line_1
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

address_line_ 2
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

block number
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

city
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

confidence
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod coparent (state_id)
Return the coparent of the TaxLotState. This will query the TaxLotAuditLog table to determine if there is
a coparent and return it if it is found. The state_id needs to be the base ID of when the original record was
imported

Parameters state_id - integer, state id to find coparent.
Returns dict

custom_id_1
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

data_state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

district
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

extra_data
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_data_state_display (*moreargs, **morekwargs)
get_merge_state_display (*moreargs, **morekwargs)

history ()
Return the history of the taxlot state by parsing through the auditlog. Returns only the ids of the parent
states and some descriptions.

master / / parent] parent2

In the records, parent2 is most recent, so make sure to navigate parent two first since we are returning the
data in reverse over (that is most recent changes first)

Returns list, history as a list, and the master record

100 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

import_file
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

import_file_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

jurisdiction_tax lot_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod merge_relationships (merged_state, statel, state2)
Stub to implement if merging TaxLotState relationships is needed

merge_state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

normalized_address
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

number_ properties
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

organization
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

organization_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

postal_code
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

promote (cycle)
Promote the TaxLotState to the view table for the given cycle

6.11. Models 101

SEED Platform Documentation, Release 2.3.0

Args: cycle: Cycle to assign the view

Returns: The resulting TaxLotView (note that it is not returning the TaxLotState)
save (*args, **kwargs)
state

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

taxlotauditlog parent_statel
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :

parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

taxlotauditlog parent_state2

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :

parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

taxlotauditlog state

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :

parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

taxlotview_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :

parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

102

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

to_dict (fields=None, include_related_data=True)
Returns a dict version of the TaxLotState, either with all fields or masked to just those requested.

class seed.models.tax_lots.TaxLotView (id, taxlot, state, cycle)
Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

cycle
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

cycle_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

import_filename
Get the import file name form the audit logs

initialize_audit_logs (**kwargs)

notes
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

objects = <django.db.models.manager.Manager object>

project_set
Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation.

In the example:

class Pizza (Model) :
toppings = ManyToManyField(Topping, related_name='pizzas')

pizza.toppings and topping.pizzas are ManyToManyDescriptor instances.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

6.11. Models 103

SEED Platform Documentation, Release 2.3.0

project_taxlot_views
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by

create_forward_many_to_many_manager () defined below.

property_states ()
Return a list of PropertyStates associated with this TaxLotView and Cycle

Returns list of PropertyStates

property_views ()
Return a list of Property Views that are associated with this TaxLotView and Cycle

Returns list of Property Views

state

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-

ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

state_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is

executed.

taxlot

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-

ToOneDescriptor subclass) relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

child.parent isaForwardManyToOneDescriptor instance.

taxlot_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is

executed.

taxlotauditlog view
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

104 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

parent.childrenis a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

taxlotproperty_ set
Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child (Model) :
parent = ForeignKey (Parent, related_name='children')

parent.childrenisaReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager () defined below.

seed.models.tax_lots.post_save_taxlot_view (sender, **kwargs)

When changing/saving the TaxLotView, go ahead and touch the TaxLot (if linked) so that the record receives an
updated datetime

6.11. Models 105

SEED Platform Documentation, Release 2.3.0

6.11.10 Module contents

6.12 Public Package

6.12.1 Submodules
6.12.2 Models

6.12.3 Module contents

6.13 SEED Package

6.13.1 Subpackages
Management Package

Subpackages
Management Packages
Submodules

S3

Module contents
Module contents

Templatetags Package

Submodules
Breadcrumbs

class seed.templatetags.breadcrumbs.BreadcrumbNode (vars, render_func=<function cre-

ate_crumb>)
Bases: django.template.base.Node

render (context)

class seed.templatetags.breadcrumbs.UrlBreadcrumbNode (fitle, url_node, ren-
der_func=<function cre-

ate_crumb>)
Bases: django.template.base.Node

render (context)

seed.templatetags.breadcrumbs.breadcrumb (parser, token)
Section author: Andriy Drozdyuk

Renders the breadcrumb.

106 Chapter 6. Modules

SEED Platform Documentation, Release 2.

3.0

Example:

{% breadcrumb "Title of breadcrumb" url_var %}
{% breadcrumb context_var url_var %}

{% breadcrumb "Just the title" %}

{% breadcrumb just_context_var %}

Parameters:

First parameter is the title of the crumb
Second (optional) parameter is the url variable to link to, produced by url tag,
—~l.e.:

{% url "person_detail" object.id as person_url %}

then:

{% breadcrumb person.name person_url %}

[

seed.templatetags.breadcrumbs.breadcrumb_root (parser, token)
Section author: Andriy Drozdyuk

Renders the breadcrumb.

Examples:

{% breadcrumb "Title of breadcrumb" url_var %}
{% breadcrumb context_var url_var %}
{% breadcrumb "Just the title" %}

o

{% breadcrumb just_context_var %}

Parameters:

First parameter is the title of the crumb,
Second (optional) parameter is the url variable to link to, produced by url tag,
—i.e.:

{% url "person_detail/" object.id as person_url %}

then:

{% breadcrumb person.name person_url %}

seed.templatetags.breadcrumbs.breadcrumb_url (parser, token)
Same as breadcrumb but instead of url context variable takes in all the arguments URL tag takes.

{% breadcrumb "Title of breadcrumb" person_detail person.id %}
{% breadcrumb person.name person_detail person.id %}

seed.templatetags.breadcrumbs.breadcrumb_url_root (parser, token)
Same as breadcrumb but instead of url context variable takes in all the arguments URL tag takes.

{% breadcrumb "Title of breadcrumb" person_detail person.id %}
{% breadcrumb person.name person_detail person.id %}

seed.templatetags.breadcrumbs.create_crumb (title, url=None)
Helper function

seed.templatetags.breadcrumbs.create_crumb_first (fitle, url=None)
Helper function

6.13. SEED Package

107

SEED Platform Documentation, Release 2.3.0

Test Helpers Package

Subpackages

Test Helper Factor Package
Subpackages

Test Helper Factory Lib Package
Submodules

Chomsky

seed.test_helpers.factory.lib.chomsky.generate_chomsky (times=>5, line_length=72)

Submodules
Helpers

class seed.test_helpers.factory.helpers.DjangoFunctionalFactory

classmethod invalid_ test_cc_number ()
classmethod rand_bool ()

classmethod rand_city ()

classmethod rand city suffix()

classmethod rand_currency (start=0, end=100)
classmethod rand_date (start_year=1900, end_year=2011)
classmethod rand_domain ()

classmethod rand_email ()

classmethod rand_ float (start=0, end=100)
classmethod rand_int (start=0, end=100)
classmethod rand_name ()

classmethod rand phone ()

classmethod rand_plant_name ()

classmethod rand_str (length=None)
classmethod rand_ street_address()
classmethod rand_street_suffix()
classmethod random_conversation (paragraphs=3)
classmethod test_cc _number (valid=True)

classmethod valid_test_cc_number ()

108 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

Module contents

Tests Package

Submodules
Admin Views

class seed.tests.test_admin_views.AdminViewsTest (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()

test_add _org()
Happy path test for creating a new org.

test_add_org dupe ()
Trying to create an org with a dupe name fails.

test_add_user_existing org()
Test creating a new user, adding them to an existing org in the process.

test_add_user_ new_org()
Create a new user and a new org at the same time.

test_add user_no_org()
Should not be able to create a new user without either selecting or creating an org at the same time.

test_signup_process ()
Simulates the entire new user signup process, from initial account creation by an admin to receiving the
signup email to confirming the account and setting a password.

test_signup_process_force_ lowercase_email ()
Simulates the signup and login forcing login username to lowercase

Decorators

class seed.tests.test_decorators.ClassDecoratorTests (methodName="runTest’)
Bases: django.test.testcases.TestCase

test_ajax request_class_dict ()

test_ajax request_class_dict_status_error()
test_ajax_request_class_dict_status_false()
test_ajax_request_class_format_type ()
test_require_organization_id class_no_org_id()
test_require_organization_id_class_org id()
test_require_organization_id_class_org id not_int ()

class seed.tests.test_decorators.RequireOrganizationIDTests (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()

test_require_organization_id fail no_key ()

6.13. SEED Package 109

SEED Platform Documentation, Release 2.3.0

test_require_organization_id_fail not_numeric()
test_require_organization_id_ success_integer ()
test_require_organization_id success_string()

class seed.tests.test_decorators.TestDecorators (methodName="runTest’)
Bases: django.test.testcases.TestCase

Tests for locking tasks and reporting progress.
locked =1

pk = 34

setUp ()

test_get_prog key ()
We format our cache key properly.

test_increment_ cache ()
Sum our progress by increments properly.

test_locking ()
Make sure we indicate we’re locked if and only if we’re inside the function.

test_locking w_exception ()
Make sure we release our lock if we have had an exception.

test_progress ()
When a task finishes, it increments the progress counter properly.

unlocked = 0

exception seed.tests.test_decorators.TestException
Bases: exceptions.Exception

Exporters
Models
Tasks

class seed.tests.test_tasks.TestTasks (methodName="runTest’)
Bases: django.test.testcases.TestCase

Tests for dealing with SEED related tasks.
setUp ()
test_delete_organization/()

test_delete_organization_doesnt_delete_user_if multiple_memberships ()
Deleting an org should not delete the orgs users if the user belongs to many orgs.

Views

class seed.tests.test_views.DefaultColumnsViewTests (methodName="runTest’)
Bases: seed.tests.util.DeleteModelsTestCase

Tests of the SEED default custom saved columns

110 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

setUp ()
test_get_all_columns ()
test_set_default_columns ()

class seed.tests.test_views.GetDatasetsViewsTests (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()

test_delete_dataset ()
test_get_dataset ()
test_get_datasets()
test_get_datasets_count ()
test_get_datasets_count_invalid()
test_update_dataset ()

class seed.tests.test_views.ImportFileViewsTests (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()

test_delete_file()
test_get_import_file()
test_get_matching results ()

class seed.tests.test_views.InventoryViewTests (methodName="runTest’)
Bases: seed.tests.util.DeleteModelsTestCase

setUp ()

test_get_cycles ()

test_get_properties ()
test_get_properties_cycle_id()
test_get_properties_empty page ()
test_get_properties_page not_an_integer ()
test_get_properties_pint_fields ()
test_get_properties_property extra_data()
test_get_properties_taxlot_extra data()
test_get_properties_with_taxlots ()
test_get_property ()

test_get_property columns ()
test_get_property multiple_taxlots()
test_get_taxlot ()
test_get_taxlot_columns ()
test_get_taxlots()

test_get_taxlots_empty page ()

6.13. SEED Package 111

SEED Platform Documentation, Release 2.3.0

test_get_taxlots_extra_data()
test_get_taxlots_missing jurisdiction_tax_lot_id()
test_get_taxlots _multiple taxlots()
test_get_taxlots_no_cycle_id()
test_get_taxlots_page_not_an_integer ()

class seed.tests.test_views.MainViewTests (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()
test_home ()

class seed.tests.test_views.TestMCMViews (methodName="runTest’)
Bases: django.test.testcases.TestCase

assert_expected_mappings (actual, expected)
For each k,v pair of form column_name: [dest_col, confidence] in actual, assert that expected contains the
same column_name and dest_col mapping.

expected mappings = {u'address': [u'owner_ address', 70], u'building id': [u'Building
raw_columns_expected = {u'raw_columns': [u'name', u'address', u'year built', u'buildi
setUp ()

test_create_dataset ()
tests the create_dataset view, allows duplicate dataset names

test_get_column_mapping suggestions ()
test_get_column_mapping_suggestions_pm_file ()
test_get_column_mapping suggestions_with_columns ()

test_get_raw_column_names ()
Good case for get_raw_column_names.

test_progress ()
Make sure we retrieve data from cache properly.

test_save_column_mappings ()

test_save_column_mappings_idempotent ()
We need to make successive calls to save_column_mappings.

Tests

class seed.tests.tests.ComplianceTestCase (methodName="runTest’)
Bases: django.test.testcases.TestCase

test_basic compliance_creation ()

class seed.tests.tests.ProjectTestCase (methodName="runTest’)
Bases: django.test.testcases.TestCase

test_basic_project_creation ()

class seed.tests.tests.UtilsTests (methodName="runTest’)
Bases: django.test.testcases.TestCase

112 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

setUp ()

test_get_buildings_count_for_ user|()

Utils

class seed.tests.util.DeleteModelsTestCase (methodName="runTest’)
Bases: django.test.testcases.TestCase

setUp ()
tearDown ()

class seed.tests.util.FakeClient
Bases: object

An extremely light-weight test client.
get (view_func, data, headers=None, **kwargs)
post (view_func, data, headers=None, **kwargs)

class seed.tests.util.FakeRequest (data=None, headers=None, user=None, method="POST’,
*rkwargs)
Bases: object

A simple request stub.

GET = {}

META = {'REMOTE ADDR': '127.0.0.1'}
POST = {}

body = None

path = 'fake_login_path'’

6.13.2 Inheritance
6.13.3 Submodules

6.13.4 Decorators

seed.decorators.DecoratorMixin (decorator)
Converts a decorator written for a function view into a mixin for a class-based view.

Example:

LoginRequiredMixin = DecoratorMixin (login_required)
class MyView (LoginRequiredMixin) :
pass

class SomeView (DecoratorMixin (some_decorator), DecoratorMixin (something_else)):

pass

seed.decorators.ajax_request (func)
Copied from django-annoying, with a small modification. Now we also check for ‘status’ or ‘success’ keys and
return correct status codes

6.13. SEED Package 113

SEED Platform Documentation, Release 2.3.0

If view returned serializable dict, returns response in a format requested by HTTP_ACCEPT header. Defaults
to JSON if none requested or match.

Currently supports JSON or YAML (if installed), but can easily be extended.

Example:

@ajax_ request

def my_view (request) :
news = News.objects.all()
news_titles = [entry.title for entry in news]
return { 'news_titles': news_titles }

seed.decorators.ajax_request_class (func)
* Copied from django-annoying, with a small modification. Now we also check for ‘status’ or
‘success’ keys and return correct status codes

If view returned serializable dict, returns response in a format requested by HTTP_ACCEPT header. Defaults
to JSON if none requested or match.

Currently supports JSON or YAML (if installed), but can easily be extended.

Example:

@ajax request

def my_view(self, request):
news = News.objects.all()
news_titles = [entry.title for entry in news]
return { 'news_titles': news_titles }

seed.decorators.get_prog_key (func_name, import_file_pk)
Return the progress key for the cache

seed.decorators.lock_and track (fn, *args, **kwargs)
Decorator to lock tasks to single executor and provide progress url.

seed.decorators.require_organization_id (func)
Validate that organization_id is in the GET params and it’s an int.

seed.decorators.require_organization_id_class (fn)
Validate that organization_id is in the GET params and it’s an int.

seed.decorators.require_organization_membership (fn)
Validate that the organization_id passed in GET is valid for request user.

6.13.5 Factory

class seed.factory.SEEDFactory
Bases: seed.test_helpers. factory.helpers.DjangoFunctionalFactory

model factory for SEED

classmethod building_snapshot (canonical_building=None, *args, **kwargs)
creates an BuildingSnapshot inst.

if canonical_building (CanonicalBuilding inst.) is None, then a CanonicalBuilding inst. is created and a
BuildingSnapshot inst. is created and linked to the CanonicalBuilding inst.

114 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

6.13.6 Models

6.13.7 Search

Search methods pertaining to buildings.

seed.search.build_json_params (order_by, sort_reverse)
returns db_columns, extra_data_sort, and updated order_by

Parameters order_by (str) — field to order_by

Returns tuple: db_columns: dict of known DB columns i.e. non-JSONField, extra_data_sort bool if
order_by is in extra_data JSONField, order_by str if sort_reverse and DB column prepend
a ‘-* for the django order_by

seed.search.build_shared buildings_orgs (orgs)
returns a list of sibling and parent orgs

seed.search.create_building queryset (orgs, exclude, order_by, other_orgs=None, ex-

tra_data_sort=False)
creates a queryset of buildings within orgs. If other_orgs, buildings in both orgs and other_orgs will be

represented in the queryset.
Parameters
* orgs — queryset of Organization inst.
* exclude - django query exclude dict.
* order_by — django query order_by str.
* other_orgs - list of other orgs to or the query

seed.search.create_inventory_queryset (inventory_type, orgs, exclude, order_by,

other_orgs=None)
creates a queryset of properties or taxlots within orgs. If other_orgs, properties/taxlots in both orgs and

other_orgs will be represented in the queryset.
Parameters
* inventory_ type — property or taxlot.
* orgs — queryset of Organization inst.
* exclude - django query exclude dict.
* order_by — django query order_by str.
* other_orgs - list of other orgs to or the query

seed.search.filter_other_params (queryset, other_params, db_columns)
applies a dictionary filter to the query set. Does some domain specific parsing, mostly to remove extra query
params and deal with ranges. Ranges should be passed in as ‘<field name>__lte’ or ‘<field name>__gte’ e.g.
other_params = { ‘gross_floor_area__Ite’: 50000}

Parameters
* Queryset queryset (Django) — queryset to be filtered
* other_params (dict) — dictionary to be parsed and applied to filter.
e db_columns (dict) — list of column names, extra_data blob outside these

Returns Django Queryset:

6.13. SEED Package 115

SEED Platform Documentation, Release 2.3.0

seed.search.generate_paginated_results (queryset, number_per_page=25, page=1,
whitelist_orgs=None, below_threshold=Fualse,

matching=True)
Return a page of results as a list from the queryset for the given fields

Parameters
* queryset — optional queryset to filter from
* number_per_page (int)— optional number of results per page

* page (int)— optional page of results to get

* whitelist_orgs — a queryset returning the organizations in which all building fields

can be returned, otherwise only the parent organization’s exportable_fields
be returned. The whitelist_orgs are the orgs the request user belongs.

should

* below_threshold - True if less than the parent org’s query threshold is greater than the

number of queryset results. If True, only return buildings within whitelist_orgs.

* matching - Toggle expanded parent and children data, including coparent and confidence

Usage:

generate_paginated_results(q, 1)

Returns:

[

'gross_floor_area': 1710,
'site_eui': 123,
'tax_lot_id': 'a-tax-lot-id',

'yvear_built': 2001

seed.search.get_building fieldnames ()
returns a list of field names for the BuildingSnapshot class/model that will be searched against

seed.search.get_inventory_ fieldnames (invenfory_type)
returns a list of field names that will be searched against

seed.search.get_orgs_w_public_fields ()
returns a list of orgs that have publicly shared fields

seed.search.inventory_ search_filter_ sort (inventory_type, params, user)
Given a parsed set of params, perform the search, filter, and sort for Properties or Taxlots

seed.search.is_not_whitelist_building (parent_org, building, whitelist_orgs)
returns false if a building is part of the whitelist_orgs

Parameters
* parent_org - the umbrella parent Organization instance.
* building - the BuildingSnapshot inst.
* whitelist_orgs — queryset of Organization instances.
Returns bool

seed.search.mask_results (search_results)
masks (deletes dict keys) for non-shared public fields

116 Chapter 6

. Modules

SEED Platform Documentation, Release 2.3.0

seed.search.orchestrate_search_filter_ sort (params, user, skip_sort=False)
Given a parsed set of params, perform the search, filter, and sort for BuildingSnapshot’s

seed.search.paginate_results (request, search_results)
returns a paginated list of dict results

seed.search.parse_body (request)
parses the request body for search params, g, etc

Parameters request — django wsgi request object
Returns dict

Example:

{
'exclude': dict, exclude dict for django queryset
'order_by': str, query order_by, defaults to 'tax_lot_id'
'sort_reverse': bool, True if ASC, False if DSC
'page': int, pagination page
'number_per_page': int, number per pagination page
'show_shared_buildings': bool, whether to search across all user's orgs
'g': str, global search param
'other_search_params': dict, filter params
'project_1id': str, project id if exists in body

seed.search.process_search_params (params, user, is_api_request=False)
Given a python representation of a search query, process it into the internal format that is used for searching,
filtering, sorting, and pagination.

Parameters

* params — a python object representing the search query

* user — the user this search is for

* is_api_request — bool, boolean whether this search is being done as an api request.
Returns dict

Example:

{
'exclude': dict, exclude dict for django queryset
'order_by': str, query order_by, defaults to 'tax_lot_id'
'sort_reverse': bool, True if ASC, False if DSC
'page': int, pagination page
'number_per_page': int, number per pagination page
'show_shared_buildings': bool, whether to search across all user's orgs
'g': str, global search param
'other_search_params': dict, filter params
'project_id': str, project id if exists in body

seed.search.remove_results_below_q threshold (search_results)
removes buildings if total count of buildings grouped by org is less than their org’s public query threshold

Parameters search_results (1ist/queryset)— search results

Returns list or queryset

6.13. SEED Package 117

SEED Platform Documentation, Release 2.3.0

seed.search.search_buildings (g, fieldnames=None, queryset=None)

returns a queryset for matching buildings :param str or unicode q: search string :param list fieldnames: list of

BuildingSnapshot model fieldnames

(defaults to those generated by get_building_field_names())

Parameters queryset - optional queryset to filter from, defaults to BuildingSnap-

shot.objects.none()
Returns

queryset queryset of matching buildings

seed.search.search_inventory (inventory_type, q, fieldnames=None, queryset=None)

returns a queryset for matching Taxlot(View)/Property(View) :param str or unicode q: search string :param list

fieldnames: list of model fieldnames :param queryset: optional queryset to filter from, defaults to

BuildingSnapshot.objects.none()

Returns

queryset queryset of matching buildings

seed.search.search_properties (q, fieldnames=None, queryset=None)

seed.search.search_public_buildings (request, orgs)
returns a queryset or list of buildings matching the search params and count

Parameters
* request — wsgi request (Django) for parsing params
* orgs - list of Organization instances to search within
Returns tuple (search_results_list, result count)

seed.search.search_taxlots (q, fieldnames=None, queryset=None)

6.13.8 Tasks

6.13.9 Token Generator

token_generator.py - taken from django core master branch
needed a token check that would not expire after three days for sending a signup email

class seed.token_generators.SignupTokenGenerator
Bases: object

Strategy object used to generate and check tokens for the password reset mechanism.

check_token (user, token, token_expires=True)
Check that a password reset token is correct for a given user.

make_token (user)
Returns a token that can be used once to do a password reset for the given user.

118 Chapter 6

. Modules

SEED Platform Documentation, Release 2.3.0

6.13.10 URLs
6.13.11 Utils
6.13.12 Views

6.13.13 Module contents
6.14 Serializers Package

6.14.1 Submodules

6.14.2 Serializers

class seed.serializers.celery.CeleryDatetimeSerializer (skipkeys=False, en-
sure_ascii=True,
check_circular=True,
allow_nan=True,
sort_keys=False, in-
dent=None, separa-
tors=None, encoding="utf-

8’, default=None)
Bases: json.encoder.JSONEncoder

default (obj)
static seed_decoder (0bj)
static seed_dumps (0bj)

static seed_loads (0bj)

6.14.3 Labels

class seed.serializers.labels.LabelSerializer (*args, **kwargs)
Bases: rest_framework.serializers.ModelSerializer

class Meta

extra kwargs = {'super_organization': {'write_only': True}}
fields = ('id', 'name', 'color', 'organization_id', 'super_organization', 'is_appl:
model

alias of StatusLabel

get_is_applied (0bj)

6.14. Serializers Package 119

SEED Platform Documentation, Release 2.3.0

6.14.4 Module contents

6.15 URLs Package

6.15.1 Submodules
6.15.2 Accounts
6.15.3 APIs

6.15.4 Main

6.15.5 Projects
6.16 Utilities Package

6.16.1 Submodules

6.16.2 APIs

required approvals from the U.S. Department of Energy) and contributors. All rights reserved. # NOQA :author

class seed.utils.api.APIBypassCSRFMiddleware (get_response)
Bases: object

This middleware turns off CSRF protection for API clients.
It must come before CsrfViewMiddleware in settings. MIDDLEWARE.

class seed.utils.api.OrgCreateMixin
Bases: seed.utils.api.OrgMixin

Mixin to add organization when creating model instance

perform_create (serializer)
Override to add org

class seed.utils.api.OrgCreateUpdateMixin
Bases: seed.utils.api.OrgCreateMixin, seed.utils.api.OrgUpdateMixin

Mixin to add organization when creating/updating model instance

class seed.utils.api.OrgMixin
Bases: object

Provides get_organization and get_parent_org method

get_organization (request, return_obj=None)
Get org from query param or request.user. :param request: request object. :param return_obj: bool. Set to
True if obj vs pk is desired. :return: int representing a valid organization pk or

organization object.

get_parent_org (request)
Gets parent organization of org from query param or request. :param request: Request object. :return:
organization object.

120 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

class seed.utils.api.OrgQuerySetMixin
Bases: seed.utils.api.OrgMixin

Mixin proving a get_queryset method that filters on organization.

In order to use this mixin you must specify the model attributes on the View[Set] class. By default it assumes
there is an organization field on the model. You can override this by setting the orgfilter attribute to the appropri-
ate fieldname. This also allows nested fields e.g. foreign_key.organization By default this retrieves organization
from query string param OR the default_organization or first returned organization of the logged in user. You
can force it to return the appropriate “parent” organization by setting the force_parent attribute to True.

get_queryset ()
“get_queryset filtered on organization

class seed.utils.api.OrgUpdateMixin
Bases: seed.utils.api.OrgMixin

Mixin to add organization when updating model instance

perform_update (serializer)
Override to add org

class seed.utils.api.OrgValidateMixin
Bases: object

Mixin to provide a validate() method organization to ensure users belongs to the same org as the instance
referenced by a foreign key..

You must set org_validators on the Serializer that uses this Mixin. This is a list of OrgValidator named tuples
(where key is the key on request data representing the foreign key, and field the foreign key that represents the
organization on the corresponding model.

my_validator = OrgValidator(key="foreign_key, field="organization_id’)
..example:
class MySerializer(OrgValidateMixin, serializers.ModelSerializer):

foreign_key= serializers.PrimaryKeyRelatedField(query_set=MyModel.objects.all()

) org_validators = [my_validator]
This ensures request.user belongs to the org MyModel.organization
You can traverse foreign key relationships by using a double underscore in validator.field
In the example above setting validator field to be ‘property__org_id’ is equivalent to MyModel.property.org_id
If you use this Mixin and write a validate method, you must call super to ensure validation takes place.

validate (data)
Object level validation. Checks for self.org_validators on Serializers and ensures users belongs to org
corresponding to the foreign key being set.

validate_org (instance, user, validator)
Raise error if orgs do not match. :param instance: value in request.data.get(key) to check against :type in-
stance: model instance :param: org_id of user, from get_org_id(request) :type org_id: int :param validator:
validator to user :type: OrgValidator named tuple

class seed.utils.api.OrgValidator (key, field)
Bases: tuple

field
Alias for field number 1

6.16. Utilities Package 121

SEED Platform Documentation, Release 2.3.0

key
Alias for field number O

seed.utils.api.api_endpoint (fnn)
Decorator function to mark a view as allowed to authenticate via API key.

Decorator must be used before login_required or has_perm to set request.user for those decorators.

seed.utils.api.api_endpoint_class (fn)
Decorator function to mark a view as allowed to authenticate via API key.

Decorator must be used before login_required or has_perm to set request.user for those decorators.

seed.utils.api.clean_api_regex (url)
Given a django-style url regex pattern, strip it down to a human-readable url.

TODO: If pks ever appear in the url, this will need to account for that.

seed.utils.api.drf_api_endpoint (fn)
Decorator to register a Django Rest Framework view with the list of API endpoints. Marks it with
is_api_endpoint = True as well as appending it to the global endpoints list.

seed.utils.api.format_api_docstring (docstring)
Cleans up a python method docstring for human consumption.

seed.utils.api.get_all_urls (urllist, prefix=")
Recursive generator that traverses entire tree of URLSs, starting with urllist, yielding a tuple of (url_pattern,
view_function) for each one.

seed.utils.api.get_api_endpoints ()
Examines all views and returns those with is_api_endpoint set to true (done by the @api_endpoint decorator).

seed.utils.api.get_api_request_user (request)
Determines if this is an API request and returns the corresponding user if so.

seed.utils.api.get_org_id_from_validator (instance, field)
For querysets Django enables you to do things like:

note double underscore. However you can’t do:
This presents an issue as getattr only works 1 level deep:
getattr(obj, ‘org.id’) does not work either.

This can be worked around using rgetattr (above). This functions mimics getattr(obj, ‘org__id’) by splitting field
on __ and calling rgetattr on the result.

seed.utils.api.rgetattr (obj, Ist)
This enables recursive getattr look ups. given obj, [‘a’, ‘b’, ‘c’] as params it will look up: obj.a, a.b, b.c returning
b.c unless one of the previous values was None, in which case it returns None immediately.

Parameters
* obj (object) — initial object to examine

e 1st (1ist) - list of successive attributes to look up

6.16.3 Buildings

seed.utils.buildings.get_buildings_for_ user_count (user)
returns the number of buildings in a user’s orgs

seed.utils.buildings.get_search_query (user, params)

122 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

seed.utils.buildings.get_source_type (import_file, source_type="")
Used for converting ImportFile source_type into an int.

6.16.4 Constants

6.16.5 Mappings
seed.utils.mapping.get_mappable_ types (exclude_fields=None)
Like get_mappable_columns, but with type information.

seed.utils.mapping.get_table_and_column_names (column_mapping,

) o) attr_name="column_raw’)
Turns the Column.column_names into a serializable list of str.

6.16.6 Organizations
seed.utils.organizations.create_organization (user, org_name=", *args, **kwargs)
Helper script to create a user/org relationship from scratch.
Parameters
* user — user inst.
* org_name - str, name of Organization we’d like to create.

* kwargs ((optional)) - ‘role’, int; ‘status’, str.

6.16.7 Projects

6.16.8 Time
seed.utils.time.convert_datestr (datestr, make_tz_aware=False)
Converts dates like 712/31/2010 into datetime objects. Dates are returned in UTC time
TODO: reconcile this with seed/lib/mcm/cleaners.py#L85-L85
Parameters
* datestr - string, value to convert
e make tz aware — bool, if set to true, then will convert the timezone into UTC time
Returns datetime or None

seed.utils.time.convert_to_js_timestamp (timestamp)
converts a django/python datetime object to milliseconds since epoch

seed.utils.time.parse_datetime (maybe_datetime)
Process a datetime value that may be None, timestamp, strftime.

6.16. Utilities Package 123

SEED Platform Documentation, Release 2.3.0

6.17 Views Package

6.17.1 Submodules
6.17.2 Accounts

6.17.3 APIs

seed.views.api.get_api_schema (request, *args, **kwargs)
Returns a hash of all API endpoints and their descriptions.

Returns:
{
'/example/url/here': {
'name': endpoint name,
'description': endpoint description

Todo: Format docstrings better.

6.17.4 Main

seed.views.main.angular_ js_tests (request)
Jasmine JS unit test code covering AngularJS unit tests

seed.views.main.delete_£file (request, *args, **kwargs)
Deletes an ImportFile from a dataset.

Payload:
{
"file_id": "ImportFile id",
"organization_id": "current user organization id as integer"
}
Returns:
{
'status': 'success' or 'error',
'message': 'error message, if any'
}

seed.views.main.delete_organization_inventory (request, *args, **kwargs)
Starts a background task to delete all properties & taxlots in an org.

DELETE Expects ‘org_id’ for the organization.

Returns:

{

'status': 'success' or 'error',

124 Chapter 6

. Modules

SEED Platform Documentation, Release 2.3.0

'progress_key': ID of background job, for retrieving job progress

seed.views.main.error404 (request)

seed.views.main.error500 (request)

seed.views.main.get_default_building detail_columns (request, *args, **kwargs)

Get default columns for building detail view.
front end is expecting a JSON object with an array of field names

Returns:

{

"columns": ["project_id", "name", "gross_floor_area"]

seed.views.main.home (request, *args, **kwargs)

the main view for the app Sets in the context for the django template:
e app_urls: a json object of all the URLSs that is loaded in the JS global namespace
* username: the request user’s username (first and last name)
AWS_UPLOAD_BUCKET_NAME: S3 direct upload bucket
AWS_CLIENT_ACCESS_KEY: S3 direct upload client key
FILE_UPLOAD_DESTINATION: ‘S3’ or ‘filesystem’

seed.views.main.public_search (request, *args, **kwargs)

the public API unauthenticated endpoint

see search_buildings for the non-public version

seed.views.main.search_buildings (request, *args, **kwargs)

Retrieves a paginated list of CanonicalBuildings matching search params.

Payload:

{
'g': a string to search on (optional),
'show_shared_buildings': True to include buildings from other orgs in this
—user's org tree,
'order_by': which field to order by (e.g. pm_property_id),
"import_file_id': ID of an import to limit search to,
'filter_params': {
a hash of Django-like filter parameters to limit query. See seed.search.
—~filter_other_params.
If 'project__slug' is included and set to a project's slug, buildings_
—will include associated labels
for that project.
}
'page': Which page of results to retrieve (default: 1),
'number_per_page': Number of buildings to retrieve per page (default: 10),

Returns:

'status': 'success',

6.17. Views Package 125

SEED Platform Documentation, Release 2.3.0

'buildings': [
{
all fields for buildings the request user has access to, e.g.:
'canonical_building': the CanonicalBuilding ID of the building,
'pm_property_id': ID of building (from Portfolio Manager),
'address_line_1': First line of building's address,
'property_name': Building's name, if any

]
'number_matching_search': Total number of buildings matching search,
'number_ returned': Number of buildings returned for this page

seed.views.main.set_default_building _detail_ columns (request, *args, **kwargs)
seed.views.main.set_default_columns (request, *args, **kwargs)

seed.views.main.version (request, *args, **kwargs)
Returns the SEED version and current git sha

6.17.5 Meters

class seed.views.meters.MeterViewSet (**kwargs)
Bases: rest_framework.viewsets.ViewSet

add_timeseries (request, *args, **kwargs)
Returns timeseries for meter — type:

status: required: true type: string description: Either success or error
meter: required: true type: dict description: meter information

timeseries: required: true type: list description: timeseries information

parameters:

* name: pk description: Meter primary key required: true paramType: path

authentication classes = (<class 'rest_framework.authentication.SessionAuthentication'

create (request, *args, **kwargs)
Creates a new project

POST Expects organization_id in query string.
— parameters:

e name: organization_id description: ID of organization to associate new project with type: integer
required: true paramType: query

¢ name: property_view_id description: Property view id to which to add the meter required: true param-
Type: form

* name: name description: name of the new meter type: string required: true paramType: form
* name: energy_type description: type of metered energy type: integer required: true paramType: form

e name: energy_units description: units of energy being metered type: integer required: true param-
Type: form

126 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

type:
status: required: true type: string description: Either success or error
list (request, *args, **kwargs)
Returns all of the meters for a property view — type:
status: required: true type: string description: Either success or error
property_view_id: required: true type: integer description: property view id of the request

meters: required: true type: array[meters] description: list of meters for property_view_id

parameters:

* name: organization_id description: The organization_id for this user’s organization required: true
paramType: query

* name: property_view_id description: The property_view_id of the building holding the meter
data required: true paramType: query

parser_classes = (<class 'rest_ framework.parsers.JSONParser'>, <class 'rest_framework.;

raise_exception = True

retrieve (request, *args, **kwargs)
Returns a single meter based on its id — type:

status: required: true type: string description: Either success or error

meters: required: true type: dict description: meter object

parameters:
* name: pk description: Meter primary key required: true paramType: path
timeseries (request, *args, **kwargs)
Returns timeseries for meter — type:
status: required: true type: string description: Either success or error
meter: required: true type: dict description: meter information

data: required: true type: list description: timeseries information

parameters:

* name: pk description: Meter primary key required: true paramType: path

6.17.6 Projects

class seed.views.projects.ProjectViewSet (**kwargs)
Bases: seed.decorators.DecoratorMixindrf_api_endpoint, rest_framework.

viewsets.ModelViewSet
ProjectViewModels = {'property': <class 'seed.models.projects.ProjectPropertyView'>,

ViewModels = {'property': <class 'seed.models.properties.PropertyView'>, 'taxlot': <

add (request, *args, **kwargs)
Add inventory to project :PUT: Expects organization_id in query string. — parameters:

6.17. Views Package 127

SEED Platform Documentation, Release 2.3.0

* name: organization_id description: ID of organization to associate new project with type: integer
required: true

* name: inventory_type description: type of inventory to add: ‘property’ or ‘taxlot’ type: string re-
quired: true paramType: query

e name: project slug or pk description: The project slug identifier or primary key for this project re-
quired: true paramType: path

* name: selected description: ids of property or taxlot views to add type: array[int] required: true

Returns:
{ ‘status’: ‘success’, ‘added’: [list of property/taxlot view ids added]

}

authentication_classes = (<class 'rest_framework.authentication.SessionAuthentication'

count (request, *args, **kwargs)
Returns the number of projects within the org tree to which a user belongs. Counts projects in parent orgs
and sibling orgs.

GET Expects organization_id in query string.
— parameters:
e name: organization_id description: The organization_id for this user’s organization required: true
paramType: query
type:
status: type: string description: success, or error
count: type: integer description: number of projects
create (request, *args, **kwargs)
Creates a new project
POST Expects organization_id in query string.
— parameters:

* name: organization_id description: ID of organization to associate new project with type: integer
required: true paramType: query

* name: name description: name of the new project type: string required: true
* name: is_compliance description: add compliance data if true type: bool required: true

e name: compliance_type description: description of type of compliance type: string required: true if
is_compliance else false

* name: description description: description of new project type: string required: true if is_compliance
else false

e name: end_date description: Timestamp for when project ends type: string required: true if
is_compliance else false

* name: deadline_date description: Timestamp for compliance deadline type: string required: true if
is_compliance else false

Returns::

128 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

{ ‘status’: ‘success’, ‘project’: {

‘id’: project’s primary key, ‘name’: project’s name, ‘slug’: project’s identifier, ‘sta-
tus’: ‘active’, ‘number_of buildings’: Count of buildings associated with project
‘last_modified’: Timestamp when project last changed ‘last_modified_by’: {

“first_name’: first name of user that made last change, ‘last_name’: last name,
‘email’: email address,

}, ‘is_compliance’: True if project is a compliance project, ‘compliance_type’: De-
scription of compliance type, ‘deadline_date’: Timestamp of when compliance is due,
‘end_date’: Timestamp of end of project, ‘property_count’: 0, ‘taxlot_count’: 0,

}
destroy (request, *args, **kwargs)
Delete a project.
DELETE Expects organization_id in query string.
— parameter_strategy: replace parameters:

* name: organization_id description: The organization_id for this user’s organization required: true
paramType: query

e name: project slug or pk description: The project slug identifier or primary key for this project
required: true paramType: path
Returns::

{ ‘status’: ‘success’,

}

get_error (error, key=None, val=None)
Return error message and corresponding http status code.

get_key (pk)
Determine where to use slug or pk to identify project.

get_organization ()
Get org id from query param or request.user.

get_params (keys)
Get required params from post etc body.

Returns dict of params and list of missing params.

get_project (key, pk)
Get project for view.

get_queryset ()

get_status (status)
Get status from string or int

list (request, *args, **kwargs)
Retrieves all projects for a given organization.

GET Expects organization_id in query string.

parameters:

6.17. Views Package 129

SEED Platform Documentation, Release 2.3.0

* name: organization_id description: The organization_id for this user’s organization required:
true paramType: query

Returns:

'status': 'success',
'projects’': [
{

'id': project's primary key,
'name': project's name,
'slug': project's identifier,
'status': 'active',
'number_ of buildings': Count of buildings associated with project
'last_modified': Timestamp when project last changed
'last_modified_by': {

'first_name': first name of user that made last change,
'last_name': last name,
'email': email address,

}s
'is_compliance': True if project is a compliance project,
'compliance_type': Description of compliance type,

'deadline_date': Timestamp of when compliance is due,
'end_date': Timestamp of end of project,
'property_count': number of property views associated with_

—Pproject,
'taxlot_count': number of taxlot views associated with project,

}.o.
]
}
parser_classes = (<class 'rest_framework.parsers.JSONParser'>,)

partial_update (request, *args, **kwargs)
Updates a project. Allows partial update, i.e. only updated param s need be supplied.

PUT Expects organization_id in query string.

— parameters:

name: organization_id description: ID of organization to associate new project with type: integer
required: true paramType: query

name: project slug or pk description: The project slug identifier or primary key for this project
required: true paramType: path

name: name description: name of the new project type: string required: false
name: is_compliance description: add compliance data if true type: bool required: false

name: compliance_type description: description of type of compliance type: string required: true if
is_compliance else false

name: description description: description of new project type: string required: true if
is_compliance else false

name: end_date description: Timestamp for when project ends type: string required: true if
is_compliance else false

name: deadline_date description: Timestamp for compliance deadline type: string required: true if
is_compliance else false

130

Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

Returns::
{ ‘status’: ‘success’, ‘project’: {

‘id’: project’s primary key, ‘name’: project’s name, ‘slug’: project’s identifier, ‘sta-
tus’: ‘active’, ‘number_of_buildings’: Count of buildings associated with project
‘last_modified’: Timestamp when project last changed ‘last_modified_by’: {

“first_name’: first name of user that made last change, ‘last_name’: last name,
‘email’: email address,

}, ‘is_compliance’: True if project is a compliance project, ‘compliance_type’: De-
scription of compliance type, ‘deadline_date’: Timestamp of when compliance is due,
‘end_date’: Timestamp of end of project, ‘property_count’: number of property views
associated with project, ‘taxlot_count’: number of taxlot views associated with project,

project_view_factory (inventory_type, project_id, view_id)
ProjectProperty View/ProjectTaxLotView factory.

query_set = <QuerySet []>

remove (request, *args, **kwargs)
Remove inventory from project :PUT: Expects organization_id in query string. — parameters:

* name: organization_id description: ID of organization to associate new project with type: integer
required: true

* name: inventory_type description: type of inventory to add: ‘property’ or ‘taxlot’ type: string re-
quired: true paramType: query

* name: project slug or pk description: The project slug identifier or primary key for this project
required: true paramType: path

* name: selected description: ids of property or taxlot views to add type: array[int] required: true

Returns:

{ ‘status’: ‘success’, ‘removed’: [list of property/taxlot view ids removed]

}

renderer classes = (<class 'rest_framework.renderers.JSONRenderer'>,)

retrieve (request, *args, **kwargs)
Retrieves details about a project.

GET Expects organization_id in query string.
— parameter_strategy: replace parameters:

* name: organization_id description: The organization_id for this user’s organization required: true
paramType: query

e name: project slug or pk description: The project slug identifier or primary key for this project
required: true paramType: path

Returns:

6.17. Views Package 131

SEED Platform Documentation, Release 2.3.0

'id': project's primary key,
'name': project's name,
'slug': project's identifier,
'status': 'active',
'number_of buildings': Count of buildings associated with project
'last_modified': Timestamp when project last changed
'last_modified_by': {
'first_name': first name of user that made last change,
'"last_name': last name,
'email': email address,
}I
'is_compliance': True if project is a compliance project,
'compliance_type': Description of compliance type,

'deadline_date': Timestamp of when compliance is due,

'end_date': Timestamp of end of project

'property_count': number of property views associated with project,
'taxlot_count': number of taxlot views associated with project,
'property_views': [list of serialized property views associated with the
—project...],

'taxlot_views': [list of serialized taxlot views associated with the
—project...],

}

serializer class
alias of ProjectSerializer

transfer (request, *args, **kwargs)
Move or copy inventory from one project to another

PUT Expects organization_id in query string.
— parameter_strategy: replace parameters:

* name: organization_id description: The organization_id for this user’s organization re-
quired: true type: integer paramType: query

* name: inventory_type description: type of inventory to add: ‘property’ or ‘taxlot’ re-
quired: true type: string paramType: query

* name: copy or move description: Whether to move or copy inventory required: true

paramType: path required: true

-name: target type: string or int description: target project slug/id to move/copy to. required:
true

* name: selected description: JSON array, list of property/taxlot views to be transferred
paramType: array[int] required: true

update (request, *args, **kwargs)
Updates a project
PUT Expects organization_id in query string.
— parameters:

* name: organization_id description: ID of organization to associate new project with type: integer
required: true paramType: query

132 Chapter 6. Modules

SEED Platform Documentation, Release 2.3.0

e name: project slug or pk description: The project slug identifier or primary key for this project
required: true paramType: path

* name: name description: name of the new project type: string required: true
* name: is_compliance description: add compliance data if true type: bool required: true

* name: compliance_type description: description of type of compliance type: string required: true if
is_compliance else false

* name: description description: description of new project type: string required: true if
is_compliance else false

* name: end_date description: Timestamp for when project ends type: string required: true if
is_compliance else false

* name: deadline_date description: Timestamp for compliance deadline type: string required: true if
is_compliance else false
Returns::
{ ‘status’: ‘success’, ‘project’: {

‘id’: project’s primary key, ‘name’: project’s name, ‘slug’: project’s identifier, ‘sta-
tus’: ‘active’, ‘number_of_buildings’: Count of buildings associated with project
‘last_modified’: Timestamp when project last changed ‘last_modified_by’: {

“first_name’: first name of user that made last change, ‘last_name’: last name,
‘email’: email address,

}, ‘is_compliance’: True if project is a compliance project, ‘compliance_type’: De-
scription of compliance type, ‘deadline_date’: Timestamp of when compliance is due,
‘end_date’: Timestamp of end of project, ‘property_count’: number of property views
associated with project, ‘taxlot_count’: number of taxlot views associated with project,

update_details (request, *args, **kwargs)
Updates extra information about the inventory/project relationship. In particular, whether the prop-
erty/taxlot is compliant and who approved it.

PUT Expects organization_id in query string.
— parameter_strategy: replace parameters:

* name: organization_id description: The organization_id for this user’s organization required: true
type: integer paramType: query

* name: inventory_type description: type of inventory to add: ‘property’ or ‘taxlot’ required: true
type: string paramType: query

* name: id description: id of property/taxlot view to update required: true type: integer paramType:
string

* name: compliant description: is compliant required: true type: bool paramType: string

Returns::

{ ‘status’: ‘success’, ‘approved_date’: Timestamp of change (now), ‘approver’: Email address of
user making change

6.17. Views Package 133

SEED Platform Documentation, Release 2.3.0

seed.views.projects.convert_dates (data, keys)

seed.views.projects.update_model (model, data)

6.17.7 Module contents

134 Chapter 6. Modules

CHAPTER /

Developer Resources

7.1 General Notes

7.1.1 Flake Settings

Flake is used to statically verify code syntax. If the developer is running flake from the command line, they should
ignore the following checks in order to emulate the same checks as the CI machine.

Code

Description

E402

module level import not at top of file

E501

line too long (82 characters) or max-line = 100

E731

do not assign a lambda expression, use a def

W503

line break occurred before a binary operator

To run flake locally call:

’ tox —-e flake8

7.2 Django Notes

Both Django and AngurlarJS are used for url routing. Django routes are in seed/urls/main.py

7.2.1 AWS S3

Amazon AWS S3 Expires headers should be set on the AngularJS partials if using S3 with the management command:
set_s3_expires_headers_for_angularjs_partials

Example:

135

SEED Platform Documentation, Release 2.3.0

python manage.py set_s3_expires_headers_for_angularjs_partials —-verbosity=3

The default user invite reply-to email can be overridden in the config/settings/common.py file. The SERVER_EMAIL
settings var is the reply-to email sent along with new account emails.

config/settings/common.py
PASSWORD_RESET_EMAIL = 'reset@seed.lbl.gov'
SERVER_EMAIL = 'no-reply@seed.lbl.gov'

7.3 AngularJsS Integration Notes

7.3.1 Template Tags

Angular and Django both use {{ and }} as variable delimiters, and thus the AngularJS variable delimiters are renamed

{$and $).

window.BE.apps.seed = angular.module ('BE.seed', ['$SinterpolateProvider'], function (
—S$interpolateProvider) {
SinterpolateProvider.startSymbol ("{$");
SinterpolateProvider.endSymbol ("$}");

7.3.2 Django CSRF Token and AJAX Requests

For ease of making angular $Attp requests, we automatically add the CSRF token to all $h#fp requests as recommended
by http://django-angular.readthedocs.io/en/latest/integration.html#xmlhttprequest

window.BE.apps.seed.run (function ($http, S$cookies) {
Shttp.defaults.headers.common|['X-CSRFToken'] = S$Scookies['csrftoken'];
)i

7.3.3 Routes and Partials or Views

Routes in static/seed/js/seed.js (the normal angularjs app.js)

window.BE.apps.seed.config(['SrouteProvider', function ($SrouteProvider) {
SrouteProvider
.when('/"', {
templateUrl: static_url + '/seed/partials/home.html'
})
.when ('/projects', {
controller: 'project_list_controller',
templateUrl: static_url + '/seed/partials/projects.html'
})
.when ('/buildings', {
templateUrl: static_url + '/seed/partials/buildings.html’
})
.when ('/admin', {
controller: 'seed_admin_controller',
templateUrl: static_url + '/seed/partials/admin.html’

136 Chapter 7. Developer Resources

http://django-angular.readthedocs.io/en/latest/integration.html#xmlhttprequest

SEED Platform Documentation, Release 2.3.0

})

.otherwise ({ redirectTo: '/' });

P

HTML partials in static/seed/partials/

on production and staging servers on AWS, or for the partial html templates loaded on S3, or a CDN, the external
resource should be added to the white list in static/seed/js/seed/js

// white list for s3
window.BE.apps.seed.config (function($sceDelegateProvider) {
$sceDelegateProvider.resourceUrlWhitelist ([

// localhost

'self',

// AWS s3

'https://be-*.amazonaws.com/ x*

1)

7.4 Logging

Information about error logging can be found here - https://docs.djangoproject.com/en/1.7/topics/logging/
Below is a standard set of error messages from Django.

A logger is configured to have a log level. This log level describes the severity of the messages that the logger will
handle. Python defines the following log levels:

DEBUG: Low level system information for debugging purposes

INFO: General system information

WARNING: Information describing a minor problem that has occurred.
ERROR: Information describing a major problem that has occurred.
CRITICAL: Information describing a critical problem that has occurred.

Each message that is written to the logger is a Log Record. The log record is stored in the web server & Celery

7.5 BEDES Compliance and Managing Columns

Columns that do not represent hardcoded fields in the application are represented using a Django database model de-
fined in the seed.models module. The goal of adding new columns to the database is to create seed.models.Column
records in the database for each column to import. Currently, the list of Columns is dynamically populated by import-
ing data.

There are default mappings for ESPM are located here:

https://github.com/SEED-platform/seed/blob/develop/seed/lib/mappings/data/pm-mapping.json

7.6 Resetting the Database

This is a brief description of how to drop and re-create the database for the seed application.

The first two commands below are commands distributed with the Postgres database, and are not part of the seed
application. The third command below will create the required database tables for seed and setup initial data that

7.4. Logging 137

https://docs.djangoproject.com/en/1.7/topics/logging/
https://github.com/SEED-platform/seed/blob/develop/seed/lib/mappings/data/pm-mapping.json

SEED Platform Documentation, Release 2.3.0

the application expects (initial columns for BEDES). The last command below (spanning multiple lines) will create a
new superuser and organization that you can use to login to the application, and from there create any other users or
organizations that you require.

Below are the commands for resetting the database and creating a new user:

psgl —-c 'DROP DATABASE "seeddb"'

psgl —-c 'CREATE DATABASE "seeddb" WITH OWNER = "seeduser";'

psgl —-c 'GRANT ALL PRIVILEGES ON DATABASE "seeddb" TO seeduser;'
psgl —-c '"ALTER USER seeduser CREATEDB;'

psgl -c '"ALTER USER seeduser CREATEROLE;'

./manage.py migrate

./manage.py create_default_user \
—--username=testuser@seed.org \
——password=password \
——organization=testorg

7.7 Testing

JS tests can be run with Jasmine at the url app/angular_js_tests/.

Python unit tests are run with

python manage.py test —-—-settings=config.settings.test

Run coverage using

coverage run manage.py test —--settings=config.settings.test
coverage report —-—-fail-under=83

Python compliance uses PEP8 with flake8

flake8
or
tox —e flake8

JS Compliance uses jshint

jshint seed/static/seed/]s

138 Chapter 7. Developer Resources

CHAPTER 8

License

Copyright (c) 2014 — 2018, The Regents of the University of California, through Lawrence Berkeley National Labo-
ratory (subject to receipt of any required approvals from the U.S. Department of Energy) and contributors. All rights
reserved.

1. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
(2) Redistributions in binary form must reproduce the copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. (3) Neither the name of the Univer-
sity of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission. (4) Nei-
ther the names Standard Energy Efficiency Data Platform, Standard Energy Efficiency Data, SEED Platform, SEED,
derivatives thereof nor designations containing these names, may be used to endorse or promote products derived from
this software without specific prior written permission from the U.S. Dept. of Energy.

2. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

139

SEED Platform Documentation, Release 2.3.0

140 Chapter 8. License

CHAPTER 9

Help

9.1 For SEED-Platform Users

Please visit our User Support website for tutorials and documentation to help you learn how to use SEED-Platform.
https://sites.google.com/a/lbl.gov/seed/

There is also a link to the SEED-Platform Users forum, where you can connect with other users.
https://groups.google.com/forum/#!forum/seed- platform-users

For direct help on a specific problem, please email: SEED-Support@lists.Ibl.gov

9.2 For SEED-Platform Developers

The Open Source code is available on the Github organization SEED-Platform:
https://github.com/SEED-platform
Please join the SEED-Platform Dev forum where you can connect with other developers.

https://groups.google.com/forum/#!forum/seed-platform-dev

14

https://sites.google.com/a/lbl.gov/seed/
https://groups.google.com/forum/#!forum/seed-platform-users
mailto:SEED-Support@lists.lbl.gov
https://github.com/SEED-platform
https://groups.google.com/forum/#!forum/seed-platform-dev

SEED Platform Documentation, Release 2.3.0

142 Chapter 9. Help

cHAaPTER 10

Frequently Asked Questions

Here are some frequently asked questions and/or issues.

* Questions
— What is the SEED Platform?
* Issues

— Why is the domain set to example.com?

— Why aren’t the static assets being served correctly?

10.1 Questions

10.1.1 What is the SEED Platform?

The Standard Energy Efficiency Data (SEED) Platform™ is a web-based application that helps organizations easily
manage data on the energy performance of large groups of buildings. Users can combine data from multiple sources,
clean and validate it, and share the information with others. The software application provides an easy, flexible, and
cost-effective method to improve the quality and availability of data to help demonstrate the economic and environ-
mental benefits of energy efficiency, to implement programs, and to target investment activity.

The SEED application is written in Python/Django, with AngularJS, Bootstrap, and other JavaScript libraries used for
the front-end. The back-end database is required to be PostgreSQL.

The SEED web application provides both a browser-based interface for users to upload and manage their building
data, as well as a full set of APIs that app developers can use to access these same data management functions.

Work on SEED Platform is managed by the National Renewable Energy Laboratory, with funding from the U.S.
Department of Energy.

143

SEED Platform Documentation, Release 2.3.0

10.2 Issues

10.2.1 Why is the domain set to example.com?

If you see example.com in the emails that are sent from your hosted version of SEED then you will need to update
your django sites object in the database.

10.2.2 Why aren’t the static assets being served correctly?

Make sure that your local_untracked.py file does not have STATICFILES_STORAGE set to anything. If so, then
comment out that section and redeploy/recollect/compress your static assets.

144 Chapter 10. Frequently Asked Questions

cHAPTER 11

Updating this documentation

This python code documentation was generated by running the following:

$ pip install -r requirements/local.txt

$ sphinx-apidoc -o docs/source/modules . seed/lib/mcm seed/lib/superperms
$ cd docs

$ make html

145

SEED Platform Documentation, Release 2.3.0

146 Chapter 11. Updating this documentation

cHAPTER 12

Indices and tables

* genindex
* modindex

e search

147

SEED Platform Documentation, Release 2.3.0

148 Chapter 12. Indices and tables

Python Module Index

C

config.template_context, 41
config.tests, 42
config.utils, 42
config.views, 42
config.wsgi, 42

S

seed,
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.

seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.

119

audit_logs
audit_logs
audit_logs
audit_logs

.models, 37
.tests, 39
.urls, 40

.views, 40

data_importer, 50
data_importer.managers, 42
data_importer.utils,43
decorators, 113

factory, 114
green_button, 52
green_button.tests, 50

green_button.xml_importer, 50

landing, 59
landing. forms, 52
landing.management, 52

landing.management .commands, 52

seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.

seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.

landing.management . commands .update_ 8§%9;

52
landing.models, 53
landing.tests, 58
landing.urls, 58
landing.views, 58
1ib, 59
management, 106
management .commands, 106
managers, 60
managers. json, 59
managers.tests, 59
models, 106
models.auditlog, 60

seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.
seed.

models.columns, 60
models.cycles, 66
models.models, 68
models.projects, 75
models.properties, 80
models.tax_lots, 95
public, 106
search, 115
serializers, 120
serializers.celery, 119
serializers.labels, 119
tasks, 118
templatetags.breadcrumbs, 106
test_helpers, 109
test_helpers.factory.helpers, 108
test_helpers.factory.lib.chomsky
108
tests.test_admin_views, 109
tests.test_decorators, 109
tests.test_tasks, 110
tests.test_views, 110
tests.tests, 112
tests.util, 113
token_generators, 118
urls, 119
utils, 119
utils.api, 120
utils.buildings, 122
utils.constants, 123
utils.mapping, 123
utils.organizations, 123
utils.time, 123
views, 134
views.meters, 126
views.projects, 127

149

SEED Platform Documentation, Release 2.3.0

150 Python Module Index

Index

A

acquire_lock() (in module seed.data_importer.utils), 43
action (seed.audit_logs.models.AuditLog attribute), 37
action_note (seed.audit_logs.models.AuditLog attribute),

37
action_response (seed.audit_logs.models.AuditLog at-
tribute), 37

ACTIVE_STATUS
tribute), 75

add() (seed.views.projects.ProjectViewSet method), 127

add_timeseries() (seed.views.meters.MeterViewSet
method), 126

adding_buildings_status_percentage_cache_key
(seed.models.projects.Project attribute), 75

address_line_1 (seed.models.properties.PropertyState at-
tribute), 85

address_line_1 (seed.models.tax_lots. TaxLotState
tribute), 100

address_line_2 (seed.models.properties.PropertyState at-
tribute), 85

address_line_2 (seed.models.tax_lots.TaxLotState
tribute), 100

AdminViewsTest (class in seed.tests.test_admin_views),
109

ajax_request() (in module seed.decorators), 113

ajax_request_class() (in module seed.decorators), 114

analysis_end_time (seed.models.properties.PropertyState
attribute), 85

analysis_start_time (seed.models.properties.PropertyState
attribute), 85

analysis_state (seed.models.properties.PropertyState at-
tribute), 85

ANALYSIS_STATE_COMPLETED

(seed.models.projects.Project ~ at-

at-

at-

attribute), 86

ANALYSIS_STATE_NOT_STARTED
(seed.models.properties.PropertyState
tribute), 85

ANALYSIS_STATE_QUEUED
(seed.models.properties.PropertyState
tribute), 85

ANALYSIS_STATE_STARTED
(seed.models.properties.PropertyState
tribute), 85

ANALYSIS_STATE_TYPES
(seed.models.properties.PropertyState
tribute), 85

api_endpoint() (in module seed.utils.api), 122

api_endpoint_class() (in module seed.utils.api), 122

api_key (seed.landing.models.SEEDUser attribute), 53

APIBypassCSRFMiddleware (class in seed.utils.api), 120

approved_date (seed.models.projects.ProjectProperty View
attribute), 78

approved_date (seed.models.projects.ProjectTaxLotView
attribute), 79

approver (seed.models.projects.ProjectPropertyView at-
tribute), 78

approver (seed.models.projects.ProjectTaxLotView at-
tribute), 79

approver_id (seed.models.projects.ProjectProperty View
attribute), 78

approver_id (seed.models.projects.ProjectTaxLotView at-
tribute), 79

as_collection() (in
seed.green_button.xml_importer), 50

assert_expected_mappings()
(seed.tests.test_views.TestMCM Views
method), 112

at-

at-

at-

module

(seed.models.properties.PropertyState at-

tribute), 85 AttributeOption (class in seed.models.models), 68
ANALYSIS_STATE_FAILED AttributeOption.DoesNotExist, 68

(seed.models.properties.PropertyState at- AttributeOption.MultipleObjectsReturned, 68

tribute), 85 audit_type (seed.audit_logs.models.AuditLog attribute),
analysis_state_message (seed.models.properties.PropertyState 37

AuditLog (class in seed.audit_logs.models), 37

151

SEED Platform Documentation, Release 2.3.0

AuditLog.DoesNotExist, 37

AuditLog.MultipleObjectsReturned, 37

auditlog_set (seed.landing.models.SEEDUser attribute),
53

AuditLogManager (class in seed.audit_logs.models), 39

AuditLogModelTests (class in seed.audit_logs.tests), 39

AuditLogQuerySet (class in seed.audit_logs.models), 39

AuditLogViewTests (class in seed.audit_logs.tests), 39

authentication_classes (seed.views.meters.MeterViewSet
attribute), 126

authentication_classes (seed.views.projects.ProjectViewSet

attribute), 128

B

base_fields (seed.landing.forms.LoginForm attribute), 52

block_number (seed.models.tax_lots. TaxLotState at-
tribute), 100

BLUE_CHOICE (seed.models.models.StatusLabel at-
tribute), 72

body (seed.tests.util.FakeRequest attribute), 113

breadcrumb() (in module
seed.templatetags.breadcrumbs), 106
breadcrumb_root() (in module
seed.templatetags.breadcrumbs), 107
breadcrumb_url() (in module
seed.templatetags.breadcrumbs), 107
breadcrumb_url_root() (in module

seed.templatetags.breadcrumbs), 107
BreadcrumbNode (class in
seed.templatetags.breadcrumbs), 106

build_json_params() (in module seed.search), 115
build_shared_buildings_orgs() (in module seed.search),
115

building_certification (seed.models.properties.PropertyState

attribute), 86

building_count (seed.models.properties.PropertyState at-
tribute), 86

building_data() (in
seed.green_button.xml_importer), 50

building_files (seed.models.properties.PropertyState at-
tribute), 86

module

BuildingAttributeVariant (class in seed.models.models),
69

BuildingAttribute Variant. DoesNotExist, 69

BuildingAttribute Variant. MultipleObjectsReturned, 69

buildingsnapshot_set (seed.landing.models.SEEDUser
attribute), 53

campus (seed.models.properties.Property attribute), 80

canonicalbuilding_set (seed.models.models.StatusLabel
attribute), 73

CeleryDatetimeSerializer
seed.serializers.celery), 119

(class in

check_token() (seed.token_generators.SignupTokenGenerator

method), 118

chunk_iterable() (in module seed.data_importer.utils), 43

city (seed.models.properties.PropertyState attribute), 86

city (seed.models.tax_lots.TaxLotState attribute), 100

ClassDecoratorTests (class in seed.tests.test_decorators),
109

clean() (seed.models.properties.PropertyState method),
86

clean_api_regex() (in module seed.utils.api), 122

CoercionRobot (class in seed.data_importer.utils), 43

color (seed.models.models.StatusLabel attribute), 73

COLOR_CHOICES (seed.models.models.StatusLabel at-
tribute), 72

Column (class in seed.models.columns), 60

Column.DoesNotExist, 60

Column.MultipleObjectsReturned, 60

column_mapped (seed.models.columns.ColumnMapping
attribute), 63

column_name (seed.models.columns.Column attribute),
60

column_raw (seed.models.columns.ColumnMapping at-
tribute), 64

column_set (seed.models.models.Enum attribute), 71

column_set (seed.models.models.Unit attribute), 74

ColumnMapping (class in seed.models.columns), 63

ColumnMapping.DoesNotExist, 63

ColumnMapping.MultipleObjectsReturned, 63

building_headers (seed.models.models.CustomBuildingHeadetsmnmapping_set (seed.landing.models.SEEDUser at-

attribute), 70

building_snapshot (seed.models.models.BuildingAttribute V&fmmimand (class in seed.landing.management.commands.update_eula),

attribute), 69
building_snapshot() (seed.factory. SEEDFactory
method), 114

class

tribute), 53

52
Compliance (class in seed.models.models), 69
Compliance.DoesNotExist, 69

building_snapshot_id (seed.models.models.BuildingAttribut€¥anplince. MultipleObjectsReturned, 69

attribute), 69

building_variant (seed.models.models.AttributeOption
attribute), 68

building_variant_id (seed.models.models.AttributeOption
attribute), 68

compliance_set (seed.models.projects.Project attribute),
75

compliance_type (seed.models.models.Compliance at-
tribute), 70

ComplianceTestCase (class in seed.tests.tests), 112

152

Index

SEED Platform Documentation, Release 2.3.0

compliant (seed.models.projects.ProjectProperty View at-
tribute), 78

compliant (seed.models.projects.ProjectTaxLotView at-
tribute), 79

created (seed.models.properties.Property attribute), 81

created (seed.models.properties.Property AuditLog
attribute), 82

created (seed.models.tax_lots. TaxLot attribute), 96

conditioned_floor_area (seed.models.properties.PropertyStataeated (seed.models.tax_lots. TaxLotAuditLog attribute),

attribute), 86

conditioned_floor_area_pint
(seed.models.properties.PropertyState at-
tribute), 86

confidence (seed.models.properties.PropertyState at-
tribute), 86

confidence (seed.models.tax_lots. TaxLotState attribute),
100

config.template_context (module), 41

config.tests (module), 42

config.utils (module), 42

config.views (module), 42

config.wsgi (module), 42

content_object (seed.audit_logs.models.AuditLog at-
tribute), 37

content_type (seed.audit_logs.models.AuditLog at-
tribute), 38

content_type_id (seed.audit_logs.models.AuditLog at-
tribute), 38

convert_dates() (in module seed.views.projects), 134

convert_datestr() (in module seed.utils.time), 123

convert_to_js_timestamp() (in module seed.utils.time),
123

coparent() (seed.models.properties.PropertyState class
method), 86

coparent() (seed.models.tax_lots. TaxLotState
method), 100

count() (seed.views.projects.ProjectViewSet
128

create() (seed.views.meters.MeterViewSet method), 126

class

method),

create() (seed.views.projects.ProjectViewSet method),
128

create_building_queryset() (in module seed.search), 115

create_crumb() (in module
seed.templatetags.breadcrumbs), 107

create_crumb_first() (in module

seed.templatetags.breadcrumbs), 107
create_inventory_queryset() (in module seed.search), 115
create_mappings() (seed.models.columns.Column static

method), 60
create_mappings_from_file()

(seed.models.columns.Column static method),

60
create_models() (in

seed.green_button.xml_importer), 50
create_note() (in module seed.audit_logs.views), 40
create_organization() (in module

seed.utils.organizations), 123
created (seed.models.cycles.Cycle attribute), 66

module

97

custom_id_1 (seed.models.properties.PropertyState at-
tribute), 86

custom_id_1 (seed.models.tax_lots. TaxLotState at-
tribute), 100

CustomBuildingHeaders (class in seed.models.models),
70

CustomBuildingHeaders.DoesNotExist, 70

CustomBuildingHeaders.MultipleObjectsReturned, 70

Cycle (class in seed.models.cycles), 66

cycle (seed.models.properties.Property View attribute), 93

cycle (seed.models.tax_lots.TaxLotView attribute), 103

Cycle.DoesNotExist, 66

Cycle.MultipleObjectsReturned, 66

cycle_id (seed.models.properties.Property View attribute),
93

cycle_id (seed.models.tax_lots.TaxLotView attribute),
103

cycle_set (seed.landing.models.SEEDUser attribute), 53

D

data_state (seed.models.properties.PropertyState at-

tribute), 86

data_state (seed.models.tax_lots. TaxLotState attribute),
100

date_joined (seed.landing.models.SEEDUser attribute),
54

de_camel_case() (in module config.utils), 42

deadline_date (seed.models.models.Compliance at-
tribute), 70

declared_fields (seed.landing.forms.LoginForm at-
tribute), 52

DecoratorMixin() (in module seed.decorators), 113

default() (seed.serializers.celery.CeleryDatetimeSerializer
method), 119

default_building_detail_custom_columns

(seed.landing.models.SEEDUser attribute),
54

default_custom_columns
(seed.landing.models.SEEDUser attribute),

54

DEFAULT_LABELS (seed.models.models.StatusLabel
attribute), 72

default_organization (seed.landing.models.SEEDUser at-
tribute), 54

default_organization_id (seed.landing.models.SEEDUser
attribute), 54

DefaultColumnsViewTests
seed.tests.test_views), 110

(class in

Index

153

SEED Platform Documentation, Release 2.3.0

delete_all() (seed.models.columns.Column static

method), 61

delete_mappings() (seed.models.columns.ColumnMapping fields

static method), 64
DeleteModelsTestCase (class in seed.tests.util), 113
description (seed.models.projects.Project attribute), 75
description (seed.models.properties.Property AuditLog at-
tribute), 82
description (seed.models.tax_lots. TaxLotAuditLog
attribute), 97
destroy() (seed.views.projects.ProjectViewSet method),
129
district (seed.models.tax_lots. TaxLotState attribute), 100
DjangoFunctionalFactory (class in
seed.test_helpers.factory.helpers), 108
drf_api_endpoint() (in module seed.utils.api), 122

E

email (seed.landing.models.SEEDUser attribute), 54

email_user() (seed.landing.models.SEEDUser method),
54

end (seed.models.cycles.Cycle attribute), 66

end_date (seed.models.models.Compliance attribute), 70

energy_alerts (seed.models.properties.PropertyState at-
tribute), 87

energy_score (seed.models.properties.PropertyState at-
tribute), 87

energy_type() (in module
seed.green_button.xml_importer), 51
energy_units() (in module

seed.green_button.xml_importer), 51
Enum (class in seed.models.models), 71
enum (seed.models.columns.Column attribute), 61
Enum.DoesNotExist, 71
Enum.MultipleObjectsReturned, 71
enum_id (seed.models.columns.Column attribute), 61
enum_name (seed.models.models.Enum attribute), 71
enum_values (seed.models.models.Enum attribute), 71
EnumValue (class in seed.models.models), 72
EnumValue.DoesNotExist, 72
EnumValue.MultipleObjectsReturned, 72
expected_mappings (seed.tests.test_views.TestMCM Views
attribute), 112
extra_data (seed.models.properties.PropertyState
tribute), 87
extra_data (seed.models.tax_lots. TaxLotState attribute),
100
extra_kwargs (seed.serializers.labels.LabelSerializer.Meta
attribute), 119

at-

field_name (seed.models.models.BuildingAttribute Variant
attribute), 69

(seed.serializers.labels.LabelSerializer.Meta
tribute), 119

filter_other_params() (in module seed.search), 115

first_name (seed.landing.models.SEEDUser attribute), 54

format_api_docstring() (in module seed.utils.api), 122

G

gapauditlog_view (seed.models.properties.Property View
attribute), 93

generate_chomsky() (in module
seed.test_helpers.factory.lib.chomsky), 108

generate_key() (seed.landing.models.SEEDUser

at-

method), 54
generate_paginated_results() (in module seed.search),
115

generation_date (seed.models.properties.PropertyState
attribute), 87

GET (seed.tests.util.FakeRequest attribute), 113

get() (seed.tests.util.FakeClient method), 113

get_absolute_url() (seed.landing.models.SEEDUser
method), 54

get_all_urls() (in module seed.utils.api), 122

get_analysis_state_display()
(seed.models.properties.PropertyState method),
87

get_ancestors() (in module seed.models.models), 75

get_api_endpoints() (in module seed.utils.api), 122

get_api_request_user() (in module seed.utils.api), 122

get_audit_type_display()
(seed.audit_logs.models.AuditLog method), 38

get_building_fieldnames() (in module seed.search), 116

get_building_logs() (in module seed.audit_logs.views),
40

get_buildings_for_user_count()
seed.utils.buildings), 122

get_color_display() (seed.models.models.StatusLabel
method), 73

get_column_mapping() (in
seed.models.columns), 65

get_column_mappings() (seed.models.columns.ColumnMapping
static method), 64

get_column_mappings_by_table_name()
(seed.models.columns.ColumnMapping static
method), 64

get_compliance() (seed.models.projects.Project method),
76

get_compliance_type_display()

(in module

module

(seed.models.models.Compliance method),
F 70
FakeClient (class in seed.tests.util), 113 get_core_pk_column() (in module
FakeRequest (class in seed.tests.util), 113 seed.data_importer.utils), 43
field (seed.utils.api.OrgValidator attribute), 121
154 Index

SEED Platform Documentation, Release 2.3.0

get_data_state_display() (seed.models.properties.PropertyState

method), 87

get_data_state_display() (seed.models.tax_lots.TaxLotState

method), 100
get_error() (seed.views.projects.ProjectViewSet method),
129
get_full_name()
method), 54
get_inventory_fieldnames() (in module seed.search), 116
get_is_applied() (seed.serializers.labels.LabelSerializer

(seed.landing.models.SEEDUser

method), 119
get_key() (seed.views.projects.ProjectViewSet method),
129

get_lock_time() (in module seed.data_importer.utils), 43

get_mappable_types() (in module seed.utils.mapping),
123

get_merge_state_display()
(seed.models.properties.PropertyState method),
87

get_merge_state_display()

method), 78

get_next_by_modified() (seed.models.projects.ProjectTaxLotView
method), 80

get_next_by_start() (seed.models.cycles.Cycle method),
66

get_next_by_updated() (seed.models.properties.Property
method), 81

get_next_by_updated() (seed.models.tax_lots.TaxLot
method), 96

get_or_create_default() (seed.models.cycles.Cycle class
method), 66

get_org_id_from_validator() (in module seed.utils.api),
122

get_organization() (seed.utils.api.OrgMixin method), 120

get_organization() (seed.views.projects.ProjectViewSet
method), 129

get_orgs_w_public_fields() (in module seed.search), 116

get_params() (seed.views.projects.ProjectViewSet
method), 129

get_parent_org() (seed.utils.api.OrgMixin method), 120

(seed.models.tax_lots. TaxLotState method), get_previous_by_created()
100 (seed.audit_logs.models.AuditLog method), 38
get_next_by_created() (seed.audit_logs.models.AuditLog get_previous_by_created() (seed.models.cycles.Cycle
method), 38 method), 66
get_next_by_created() (seed.models.cycles.Cycle get_previous_by_created()
method), 66 (seed.models.models.Compliance method),
get_next_by_created() (seed.models.models.Compliance 70
method), 70 get_previous_by_created()
get_next_by_created() (seed.models.models.StatusLabel (seed.models.models.StatusLabel method),
method), 73 73
get_next_by_created() (seed.models.projects.Project get_previous_by_created() (seed.models.projects.Project
method), 76 method), 76
get_next_by_created() (seed.models.projects.ProjectPropertg¥ieprevious_by_created()
method), 78 (seed.models.projects.ProjectProperty View
get_next_by_created() (seed.models.projects.ProjectTaxLotView method), 78
method), 79 get_previous_by_created()
get_next_by_created() (seed.models.properties.Property (seed.models.projects.ProjectTaxLotView
method), 81 method), 80
get_next_by_created() (seed.models.tax_lots.TaxLot get_previous_by_created()
method), 96 (seed.models.properties.Property method),
get_next_by_date_joined() 81
(seed.landing.models.SEEDUser method), get_previous_by_created() (seed.models.tax_lots. TaxLot
54 method), 96
get_next_by_end() (seed.models.cycles.Cycle method), get_previous_by_date_joined()
66 (seed.landing.models.SEEDUser method),
get_next_by_modified() (seed.audit_logs.models.AuditLog 54
method), 38 get_previous_by_end() (seed.models.cycles.Cycle
get_next_by_modified() (seed.models.models.Compliance method), 66
method), 70 get_previous_by_modified()
get_next_by_modified() (seed.models.models.StatusLabel (seed.audit_logs.models.AuditLog method), 38
method), 73 get_previous_by_modified()
get_next_by_modified() (seed.models.projects.Project (seed.models.models.Compliance method),
method), 76 70
get_next_by_modified() (seed.models.projects.ProjectPropeggtVevious_by_modified()
Index 155

SEED Platform Documentation, Release 2.3.0

(seed.models.models.StatusLabel method),
73

get_previous_by_modified()
(seed.models.projects.Project method), 76

get_previous_by_modified()
(seed.models.projects.ProjectProperty View
method), 78

get_previous_by_modified()
(seed.models.projects.ProjectTaxLotView
method), 80

get_previous_by_start()
method), 66

get_previous_by_updated()
(seed.models.properties.Property
81

get_previous_by_updated() (seed.models.tax_lots.TaxLot
method), 96

get_prog_key() (in module seed.decorators), 114

get_project() (seed.views.projects.ProjectViewSet
method), 129

get_queryset() (seed.audit_logs.models.AuditLogManager
method), 39

(seed.models.cycles.Cycle

method),

get_queryset() (seed.data_importer.managers.NotDeletedManagafe) (seed.landing. management.commands.update_eula.Command

method), 42

get_queryset()
method), 59

get_queryset()
method), 121

get_queryset() (seed.views.projects.ProjectViewSet
method), 129

get_record_type_display()
(seed.models.properties.Property AuditLog
method), 82

get_record_type_display()
(seed.models.tax_lots.TaxLotAuditLog
method), 97

get_search_query() (in module seed.utils.buildings), 122

get_shared_field_type_display()

(seed.managers.json.JsonManager

(seed.utils.api.OrgQuerySetMixin

(seed.models.columns.Column method),
61

get_short_name() (seed.landing.models.SEEDUser
method), 55

get_source_type() (in module seed.utils.buildings), 122

get_source_type_display()
(seed.models.columns.ColumnMapping
method), 64

get_status() (seed.views.projects.ProjectViewSet
method), 129

get_status_display()
method), 76

get_table_and_column_names()
seed.utils.mapping), 123

get_unit_type_display() (seed.models.models.Unit
method), 74

(seed.models.projects.Project

(in module

get_value_source_display()
(seed.models.models.AttributeOption method),
68

GetDatasetsViewsTests (class in seed.tests.test_views),
111

GRAY_CHOICE (seed.models.models.StatusLabel at-
tribute), 72

GREEN_CHOICE (seed.models.models.StatusLabel at-
tribute), 72

greenassessmentproperty_set

(seed.models.properties.Property View at-

tribute), 93
greenassessmentpropertyauditlog_set

(seed.landing.models.SEEDUser attribute),

55
gross_floor_area (seed.models.properties.PropertyState
attribute), 87

gross_floor_area_pint (seed.models.properties.PropertyState

attribute), 87
groups (seed.landing.models.SEEDUser attribute), 55

method), 52
has_compliance (seed.models.projects.Project attribute),
76

help (seed.landing.management.commands.update_eula.Command

attribute), 52

history() (seed.models.properties.PropertyState method),
87

history() (seed.models.tax_lots.TaxLotState method), 100

home_energy_score_id (seed.models.properties.PropertyState

attribute), 87

id (seed.audit_logs.models.AuditLog attribute), 38

id (seed.landing.models.SEEDUser attribute), 55

id (seed.models.columns.Column attribute), 61

id (seed.models.columns.ColumnMapping attribute), 64
id (seed.models.cycles.Cycle attribute), 66

id (seed.models.models.AttributeOption attribute), 68

id (seed.models.models.BuildingAttributeVariant at-
tribute), 69

id (seed.models.models.Compliance attribute), 70

id (seed.models.models.CustomBuildingHeaders at-

tribute), 71

id (seed.models.models.Enum attribute), 72

id (seed.models.models.EnumValue attribute), 72

id (seed.models.models.StatusLabel attribute), 73

id (seed.models.models.Unit attribute), 74

id (seed.models.projects.Project attribute), 76

id (seed.models.projects.ProjectProperty View attribute),
78

id (seed.models.projects.ProjectTaxLotView attribute), 80

156

Index

SEED Platform Documentation, Release 2.3.0

id (seed.models.properties.Property attribute), 81

id (seed.models.properties.PropertyAuditLog attribute),
82

id (seed.models.properties.PropertyState attribute), 87

id (seed.models.properties.Property View attribute), 93

id (seed.models.tax_lots. TaxLot attribute), 96

id (seed.models.tax_lots.TaxLotAuditLog attribute), 97

id (seed.models.tax_lots.TaxLotState attribute), 100

id (seed.models.tax_lots. TaxLotView attribute), 103

import_file (seed.models.columns.Column attribute), 61

import_file (seed.models.properties.PropertyState at-
tribute), 87

import_file (seed.models.tax_lots. TaxLotState attribute),
101

import_file_id (seed.models.columns.Column attribute),
61

import_file_id (seed.models.properties.PropertyState at-
tribute), 87

import_file_id (seed.models.tax_lots. TaxLotState at-
tribute), 101

import_filename (seed.models.properties.Property AuditLog

attribute), 82

import_filename (seed.models.properties.Property View
attribute), 93

import_filename (seed.models.tax_lots. TaxLotAuditLog
attribute), 97

import_filename (seed.models.tax_lots.TaxLotView at-
tribute), 103

import_xml() (in
seed.green_button.xml_importer), 51

importfile_set (seed.models.cycles.Cycle attribute), 66

ImportFileViewsTests (class in seed.tests.test_views), 111

importrecord_set
attribute), 55

INACTIVE_STATUS (seed.models.projects.Project at-
tribute), 75

module

initialize_audit_logs() (seed.models.properties.Property Vie

method), 93
initialize_audit_logs() (seed.models.tax_lots.TaxLotView
method), 103

interval_block_data() (in module
seed.green_button.xml_importer), 51
interval_data() (in module

seed.green_button.xml_importer), 51
invalid_test_cc_number()

(seed.test_helpers.factory.helpers.Dj angoFunctionlzﬁglgc

class method), 108
inventory_search_filter_sort() (in module seed.search),
116
Inventory ViewTests (class in seed.tests.test_views), 111

is_concatenated() (seed.models.columns.ColumnMapping

method), 64
is_direct() (seed.models.columns.ColumnMapping
method), 64

(seed.landing.models.SEEDUser

V‘focked

is_extra_data (seed.models.columns.Column attribute),
61

is_not_whitelist_building() (in module seed.search), 116

is_staff (seed.landing.models.SEEDUser attribute), 55

J

json_order_by()
method), 59

JsonManager (class in seed.managers.json), 59

JsonQuerySet (class in seed.managers.json), 59

jurisdiction_property_id (seed.models.properties.PropertyState
attribute), 88

jurisdiction_tax_lot_id (seed.models.tax_lots.TaxLotState
attribute), 101

(seed.managers.json.JsonQuerySet

K

key (seed.utils.api.OrgValidator attribute), 121

L

labels (seed.models.properties.Property attribute), 81

labels (seed.models.tax_lots. TaxLot attribute), 96

LabelSerializer (class in seed.serializers.labels), 119

LabelSerializer.Meta (class in seed.serializers.labels), 119

landing_page() (in module seed.landing.views), 58

last_modified_by (seed.models.projects.Project attribute),
76

last_modified_by_id
attribute), 76

last_modified_user (seed.landing.models.SEEDUser at-
tribute), 55

last_name (seed.landing.models.SEEDUser attribute), 56

LIGHT_BLUE_CHOICE
(seed.models.models.StatusLabel attribute), 72

list() (seed.views.meters.MeterViewSet method), 127

list() (seed.views.projects.ProjectViewSet method), 129

lock_and_track() (in module seed.decorators), 114

(seed.tests.test_decorators. TestDecorators at-

tribute), 110

log_action() (seed.audit_logs.models.AuditLogManager
method), 39

logentry_set (seed.landing.models.SEEDUser attribute),
56

login_view() (in module seed.landing.views), 58

LoginForm (class in seed.landing.forms), 52

u%rl}}ash() (seed.data_importer.utils.CoercionRobot

method), 43

lot_number (seed.models.properties.PropertyState at-

tribute), 88

(seed.models.projects.Project

MainViewTests (class in seed.tests.test_views), 112
make_key() (seed.data_importer.utils.CoercionRobot
method), 43

Index

157

SEED Platform Documentation, Release 2.3.0

make_token() (seed.token_generators.SignupTokenGeneratarbjects (seed.landing.models.SEEDUser attribute), 56

method), 118
mapped_mappings
attribute), 61
mask_results() (in module seed.search), 116
measure_set (seed.models.properties.PropertyState at-
tribute), 88
(seed.models.properties.PropertyState
tribute), 88
media (seed.landing.forms.LoginForm attribute), 52

(seed.models.columns.Column

measures at-

objects (seed.models.columns.Column attribute), 62

objects (seed.models.columns.ColumnMapping
tribute), 65

objects (seed.models.cycles.Cycle attribute), 67

objects (seed.models.models.AttributeOption attribute),
68

objects (seed.models.models.BuildingAttribute Variant at-
tribute), 69

objects (seed.models.models.Compliance attribute), 70

at-

merge_relationships() (seed.models.properties.PropertyStateobjects (seed.models.models.CustomBuildingHeaders at-

class method), 88

merge_relationships() (seed.models.tax_lots. TaxLotState
class method), 101

merge_state (seed.models.properties.PropertyState
attribute), 88

merge_state (seed.models.tax_lots. TaxLotState attribute),
101

META (seed.tests.util.FakeRequest attribute), 113

meter_data() (in
seed.green_button.xml_importer), 51

meters (seed.models.properties.PropertyView attribute),
93

MeterViewSet (class in seed.views.meters), 126

model (seed.serializers.labels.LabelSerializer.Meta
attribute), 119

modified_import_records
(seed.landing.models.SEEDUser
56

module

attribute),

N

name (seed.models.cycles.Cycle attribute), 67

name (seed.models.models.StatusLabel attribute), 73

name (seed.models.projects.Project attribute), 76

name (seed.models.properties.PropertyAuditLog
tribute), 83

name (seed.models.tax_lots.TaxLotAuditLog attribute),
97

normalized_address (seed.models.properties.PropertyState
attribute), 88

normalized_address (seed.models.tax_lots. TaxLotState
attribute), 101

NotDeletedManager (class
seed.data_importer.managers), 42

notes (seed.landing.models.SEEDUser attribute), 56

notes (seed.models.properties.Property View attribute), 94

notes (seed.models.tax_lots. TaxLotView attribute), 103

number_properties (seed.models.tax_lots. TaxLotState at-
tribute), 101

at-

in

O

object_id (seed.audit_logs.models.AuditLog attribute),
38
objects (seed.audit_logs.models.AuditLog attribute), 38

tribute), 71

objects (seed.models.models.Enum attribute), 72

objects (seed.models.models.EnumValue attribute), 72

objects (seed.models.models.StatusLabel attribute), 73

objects (seed.models.models.Unit attribute), 75

objects (seed.models.projects.Project attribute), 76

objects (seed.models.projects.ProjectProperty View

attribute), 78

(seed.models.projects.ProjectTaxLotView

tribute), 80

objects (seed.models.properties.Property attribute), 81

objects (seed.models.properties.Property AuditLog
attribute), 83

objects (seed.models.properties.PropertyState attribute),
88

objects (seed.models.properties.PropertyView attribute),
94

objects (seed.models.tax_lots.TaxLot attribute), 96

objects (seed.models.tax_lots.TaxLotAuditLog attribute),
97

objects (seed.models.tax_lots. TaxLotState attribute), 101

objects (seed.models.tax_lots. TaxLotView attribute), 103

occupied_floor_area (seed.models.properties.PropertyState
attribute), 88

occupied_floor_area_pint

(seed.models.properties.PropertyState

tribute), 88

(seed.models.models.BuildingAttribute Variant

attribute), 69

ORANGE_CHOICE
attribute), 72

orchestrate_search_filter_sort() (in module seed.search),
116

organization (seed.audit_logs.models.AuditLog
tribute), 38

organization (seed.models.columns.Column attribute), 62

organization (seed.models.cycles.Cycle attribute), 67

organization (seed.models.projects.Project attribute), 76

organization (seed.models.properties.Property attribute),
81

organization (seed.models.properties.Property AuditLog
attribute), 83

organization (seed.models.properties.PropertyState at-

objects at-

at-
options

(seed.models.models.StatusLabel

at-

158

Index

SEED Platform Documentation, Release 2.3.0

tribute), 88

organization (seed.models.tax_lots.TaxLot attribute), 96

organization (seed.models.tax_lots.TaxLotAuditLog at-
tribute), 97

organization (seed.models.tax_lots. TaxLotState
tribute), 101

organization_id
attribute), 38

organization_id (seed.models.columns.Column attribute),
62

organization_id (seed.models.cycles.Cycle attribute), 67

organization_id (seed.models.properties.Property at-
tribute), 81

organization_id (seed.models.properties.Property AuditLog
attribute), 83

organization_id (seed.models.properties.PropertyState at-
tribute), 89

organization_id (seed.models.tax_lots.TaxLot attribute),
96

organization_id (seed.models.tax_lots. TaxLotAuditLog
attribute), 97

organization_id (seed.models.tax_lots. TaxLotState
attribute), 101

organizationuser_set (seed.landing.models.SEEDUser at-
tribute), 56

OrgCreateMixin (class in seed.utils.api), 120

OrgCreateUpdateMixin (class in seed.utils.api), 120

OrgMicxin (class in seed.utils.api), 120

OrgQuerySetMixin (class in seed.utils.api), 120

orgs (seed.landing.models.SEEDUser attribute), 56

OrgUpdateMixin (class in seed.utils.api), 121

OrgValidateMixin (class in seed.utils.api), 121

OrgValidator (class in seed.utils.api), 121

owner (seed.models.projects.Project attribute), 76

owner (seed.models.properties.PropertyState attribute),
89

owner_address (seed.models.properties.PropertyState at-
tribute), 89

owner_city_state (seed.models.properties.PropertyState
attribute), 89

owner_email (seed.models.properties.PropertyState at-
tribute), 89

owner_id (seed.models.projects.Project attribute), 76

owner_postal_code (seed.models.properties.PropertyState
attribute), 89

owner_telephone (seed.models.properties.PropertyState
attribute), 89

at-

(seed.audit_logs.models.AuditLog

P

paginate_results() (in module seed.search), 117

parentl (seed.models.properties.Property AuditLog
attribute), 83

parentl (seed.models.tax_lots. TaxLotAuditLog attribute),
97

parentl_id (seed.models.properties.Property AuditLog at-
tribute), 83

parentl_id (seed.models.tax_lots.TaxLotAuditLog

attribute), 98

(seed.models.properties.Property AuditLog

attribute), 83

parent2 (seed.models.tax_lots. TaxLotAuditLog attribute),
98

parent2_id (seed.models.properties.Property AuditLog at-
tribute), 83

parent2_id (seed.models.tax_lots.TaxLotAuditLog
attribute), 98

parent_property (seed.models.properties.Property
tribute), 81

parent_property_id (seed.models.properties.Property at-
tribute), 81

parent_statel (seed.models.properties.PropertyAuditLog
attribute), 83

parent_statel (seed.models.properties.PropertyState at-
tribute), 89

parent_statel (seed.models.tax_lots.TaxLotAuditLog at-
tribute), 98

parent_statel_id (seed.models.properties.Property AuditLog
attribute), 84

parent_statel_id (seed.models.tax_lots.TaxLotAuditLog
attribute), 98

parent_state2 (seed.models.properties.PropertyAuditLog
attribute), 84

parent_state2 (seed.models.properties.PropertyState at-
tribute), 89

parent_state2 (seed.models.tax_lots.TaxLotAuditLog at-
tribute), 98

parent_state2_id (seed.models.properties.Property AuditLog
attribute), 84

parent_state2_id (seed.models.tax_lots.TaxLotAuditLog
attribute), 98

parse_body() (in module seed.search), 117

parse_datetime() (in module seed.utils.time), 123

parser_classes (seed.views.meters.MeterViewSet
tribute), 127

parser_classes (seed.views.projects.ProjectViewSet at-
tribute), 130

partial_update() (seed.views.projects.ProjectViewSet
method), 130

password_reset() (in module seed.landing.views), 58

parent2

at-

at-

password_reset_complete() (in module
seed.landing.views), 58
password_reset_confirm() (in module

seed.landing.views), 58
password_reset_done() (in module seed.landing.views),
58
password_set() (in module seed.landing.views), 58
path (seed.tests.util.FakeRequest attribute), 113
perform_create() (seed.utils.api.OrgCreateMixin

Index

159

SEED Platform Documentation, Release 2.3.0

method), 120
perform_update()
method), 121
pk (seed.tests.test_decorators. TestDecorators attribute),
110

(seed.utils.api.OrgUpdateMixin

project_taxlot_views (seed.models.tax_lots.TaxLotView
attribute), 103

project_view_factory() (seed.views.projects.ProjectViewSet
method), 131

ProjectPropertyView (class in seed.models.projects), 78

pm_parent_property_id (seed.models.properties.PropertyStaBrojectProperty View.DoesNotExist, 78

attribute), 89

pm_property_id (seed.models.properties.PropertyState
attribute), 90

POST (seed.tests.util. FakeRequest attribute), 113

post() (seed.tests.util. FakeClient method), 113

post_save_property_view() (in module
seed.models.properties), 95
post_save_taxlot_view() (in module

seed.models.tax_lots), 105

postal_code (seed.models.properties.PropertyState
attribute), 90

postal_code (seed.models.tax_lots. TaxLotState attribute),
101

pre_delete_state() (in module seed.models.properties), 95

PRIMARY (seed.managers.json.JsonQuerySet attribute),
59

process_header_request()
(seed.landing.models.SEEDUser
method), 57

process_search_params() (in module seed.search), 117

Project (class in seed.models.projects), 75

project (seed.models.models.Compliance attribute), 70

class

project (seed.models.projects.ProjectProperty View
attribute), 78
project (seed.models.projects.ProjectTaxLotView at-

tribute), 80

Project.DoesNotExist, 75

Project.MultipleObjectsReturned, 75

project_id (seed.models.models.Compliance attribute),
70

project_id (seed.models.projects.ProjectProperty View at-
tribute), 79

project_id (seed.models.projects.ProjectTaxLotView at-
tribute), 80

PROJECT_NAME_MAX_LENGTH
(seed.models.projects.Project attribute), 75

project_property_views (seed.models.projects.Project at-
tribute), 76

project_property_views (seed.models.properties.Property View
property_view_id (seed.models.projects.ProjectProperty View

attribute), 94

project_set (seed.landing.models.SEEDUser attribute),
57

project_set (seed.models.properties.PropertyView at-
tribute), 94

project_set (seed.models.tax_lots. TaxLotView attribute),
103

project_taxlot_views
attribute), 77

(seed.models.projects.Project

ProjectProperty View.MultipleObjectsReturned, 78

projectpropertyview_set (seed.landing.models.SEEDUser
attribute), 57

ProjectTaxLotView (class in seed.models.projects), 79

ProjectTaxLotView.DoesNotExist, 79

ProjectTaxLotView.MultipleObjectsReturned, 79

projecttaxlotview_set (seed.landing.models.SEEDUser
attribute), 57

ProjectTestCase (class in seed.tests.tests), 112

ProjectViewModels (seed.views.projects.ProjectViewSet
attribute), 127

ProjectViewSet (class in seed.views.projects), 127

promote() (seed.models.properties.PropertyState
method), 90

promote() (seed.models.tax_lots. TaxLotState method),
101

Property (class in seed.models.properties), 80

property (seed.models.properties.Property View attribute),
94

Property.DoesNotExist, 80

Property.MultipleObjectsReturned, 80

property_count (seed.models.projects.Project attribute),
77

property_id (seed.models.properties.Property View
attribute), 94

property_name (seed.models.properties.PropertyState at-
tribute), 90

property_notes (seed.models.properties.PropertyState at-
tribute), 90

property_set (seed.models.models.StatusLabel attribute),
73

property_set (seed.models.properties.Property attribute),
82

property_states() (seed.models.tax_lots.TaxLotView
method), 104

property_type (seed.models.properties.PropertyState at-
tribute), 90

property_view (seed.models.projects.ProjectProperty View

attribute), 79

attribute), 79

property_views (seed.models.projects.Project attribute),
77

property_views() (seed.models.tax_lots.TaxLotView
method), 104

PropertyAuditLog (class in seed.models.properties), 82

Property AuditLog.DoesNotExist, 82

Property AuditLog.MultipleObjectsReturned, 82

160

Index

SEED Platform Documentation, Release 2.3.0

rand_str() (seed.test_helpers.factory.helpers.DjangoFunctionalFactory
class method), 108
rand_street_address() (seed.test_helpers.factory.helpers.DjangoFunctionalF.
class method), 108
(seed.models.properties.Property AuditLog rand_street_suffix() (seed.test_helpers.factory.helpers.DjangoFunctionalFac
attribute), 84 class method), 108
propertyauditlog_state (seed.models.properties.PropertyStateandom_conversation() (seed.test_helpers.factory.helpers.DjangoFunctional
attribute), 90 class method), 108
propertyauditlog_view (seed.models.properties.Property Viewsaw_columns_expected (seed.tests.test_views.TestMCM Views
attribute), 94 attribute), 112
propertymeasure_set (seed.models.properties.PropertyState raw_mappings (seed.models.columns.Column attribute),
attribute), 90 62
PropertyState (class in seed.models.properties), 85 recent_sale_date (seed.models.properties.PropertyState
PropertyState.DoesNotExist, 85 attribute), 91
PropertyState.MultipleObjectsReturned, 85 record_type (seed.models.properties.Property AuditLog
PropertyView (class in seed.models.properties), 92 attribute), 84
Property View.DoesNotExist, 92 record_type (seed.models.tax_lots.TaxLotAuditLog at-
Property View.MultipleObjectsReturned, 92 tribute), 98
propertyview_set (seed.models.cycles.Cycle attribute), 67 RED_CHOICE (seed.models.models.StatusLabel at-
propertyview_set (seed.models.properties.PropertyState tribute), 73
attribute), 90 release_date (seed.models.properties.PropertyState at-
tribute), 91
release_lock() (in module seed.data_importer.utils), 43
remove() (seed.views.projects.ProjectViewSet method),
131
remove_duplicates() (seed.models.columns.ColumnMapping
R method), 65

raise_exception (seed.views.meters.MeterViewSet remove_results_below_q_threshold()
attribute), 127 seed.search), 117

rand_bool() (seed.test_helpers.factory.helpers.DjangoFunctiS‘?m‘éi&%P uildings_status_percentage_cache_key
class method), 108 seed.models.projects.Project attribute), 77

rand_city() (seed.test_helpers.factory.helpers.DjangoFunctidi?ﬁl‘ff%r&o(leed-templatetags~bread0mmb5-BreadCﬂlmbNode
class method), 108 method), 106

rand_city_suffix() (seed.test_helpers.factory.helpers.Dj angom&hg%@mmatetags.breadcrumbs.UrlBreadcrumbNode
class method), 108 method), 106

rand_currency() (seed.test_helpers.factory.helpers.DjangoFlﬁ?@ﬁ]Gﬁ%lI (seed.views.projects.ProjectViewSet at-
class method), 108 tribute), 131

rand_date() (seed.test_helpers.factory.helpers.DjangoFunctiédhifRgFganization_id() (in module seed.decorators),

propertyauditlog_parentl
(seed.models.properties.Property AuditLog
attribute), 84

propertyauditlog_parent2

Q

query_set (seed.views.projects.ProjectViewSet attribute),
131

(in module

class method), 108 114

rand_domain() (seed.test_helpers.factory.helpers.DjangoFurf&q¥iEaFargapjzation_id_class()

class method), 108

rand_email() (seed.test_helpers.factory.helpers.DjangoFuncie#iicadbggnization_membership()

class method), 108

(in module
seed.decorators), 114

(in module
seed.decorators), 114

rand_float() (seed.test_helpers.factory.helpers.DjangoFunctiSRREIREP_FIELDS - (seed.landing.models. SEEDUser

class method), 108

rand_int() (seed.test_helpers.factory.helpers.DjangoFunctioddfEaitgrganizationIDTests

class method), 108

attribute), 53
(class in
seed.tests.test_decorators), 109

rand_name() (seed.test_helpers.factory.helpers.DjangoFunctieiigrgotésged. views.meters. Meter ViewSet method), 127

class method), 108

retrieve() (seed.views.projects.ProjectViewSet method),

rand_phone() (seed.test_helpers.factory.helpers.Dj angoFunctionalFactJ)g}]

class method), 108

retrieve_all() (seed.models.columns.Column static

rand_plant_name() (seed.test_helpers.factory.helpers.DjangoFunctionmt}% 62

class method), 108

retrieve_db_fields() (seed.models.columns.Column static
method), 62

Index

161

SEED Platform Documentation, Release 2.3.0

retrieve_db_types() (seed.models.columns.Column static
method), 62

rgetattr() (in module seed.utils.api), 122

robots_txt() (in module config.views), 42

rule_set (seed.models.models.StatusLabel attribute), 73

S

save() (seed.audit_logs.models.AuditLog method), 38

save() (seed.landing.models.SEEDUser method), 57

save() (seed.models.columns.ColumnMapping method),

65

save() (seed.models.properties.PropertyState method), 91

save() (seed.models.tax_lots. TaxLotState method), 102

save_column_names() (seed.models.columns.Column

static method), 63
(seed.models.properties.PropertyState at-

tribute), 91

search_buildings() (in module seed.search), 117

search_inventory() (in module seed.search), 118

search_properties() (in module seed.search), 118

search_public_buildings() (in module seed.search), 118

search_taxlots() (in module seed.search), 118

seed (module), 119

seed.audit_logs.models (module), 37

seed.audit_logs.tests (module), 39

seed.audit_logs.urls (module), 40

seed.audit_logs.views (module), 40

seed.data_importer (module), 50

seed.data_importer.managers (module), 42

seed.data_importer.utils (module), 43

seed.decorators (module), 113

seed.factory (module), 114

seed.green_button (module), 52

seed.green_button.tests (module), 50

seed.green_button.xml_importer (module), 50

seed.landing (module), 59

seed.landing.forms (module), 52

seed.landing.management (module), 52

seed.landing.management.commands (module), 52

seed.landing. management.commands.update_eula (mod-

ule), 52

seed.landing.models (module), 53

seed.landing.tests (module), 58

seed.landing.urls (module), 58

seed.landing.views (module), 58

seed.lib (module), 59

seed.lib.mappings (module), 59

seed.lib.merging (module), 59

seed.management (module), 106

seed.management.commands (module), 106

seed.managers (module), 60

seed.managers.json (module), 59

seed.managers.tests (module), 59

seed.models (module), 106, 115

scenarios

seed.models.auditlog (module), 60
seed.models.columns (module), 60
seed.models.cycles (module), 66
seed.models.models (module), 68
seed.models.projects (module), 75
seed.models.properties (module), 80
seed.models.tax_lots (module), 95
seed.public (module), 106

seed.search (module), 115

seed.serializers (module), 120
seed.serializers.celery (module), 119
seed.serializers.labels (module), 119
seed.tasks (module), 118
seed.templatetags.breadcrumbs (module), 106
seed.test_helpers (module), 109
seed.test_helpers.factory.helpers (module), 108
seed.test_helpers.factory.lib.chomsky (module), 108
seed.tests.test_admin_views (module), 109
seed.tests.test_decorators (module), 109
seed.tests.test_tasks (module), 110
seed.tests.test_views (module), 110
seed.tests.tests (module), 112
seed.tests.util (module), 113
seed.token_generators (module), 118
seed.urls (module), 119

seed.utils (module), 119

seed.utils.api (module), 120
seed.utils.buildings (module), 122
seed.utils.constants (module), 123
seed.utils.mapping (module), 123
seed.utils.organizations (module), 123
seed.utils.time (module), 123

seed.views (module), 119, 134
seed.views.meters (module), 126
seed.views.projects (module), 127

seed_decoder() (seed.serializers.celery.CeleryDatetimeSerializer

static method), 119

seed_dumps() (seed.serializers.celery.CeleryDatetimeSerializer

static method), 119

seed_loads() (seed.serializers.celery.CeleryDatetimeSerializer

static method), 119
SEEDFactory (class in seed.factory), 114
SEEDUser (class in seed.landing.models), 53
SEEDUser.DoesNotExist, 53
SEEDUser.MultipleObjectsReturned, 53
sentry_js() (in module config.template_context), 41
serializer_class (seed.views.projects.ProjectViewSet at-
tribute), 132
session_key() (in module config.template_context), 41

setUp() (seed.audit_logs.tests. AuditLogModelTests
method), 39

setUp() (seed.audit_logs.tests.AuditLogViewTests
method), 39

setUp() (seed.landing.tests.UserLoginTest method), 58

162

Index

SEED Platform Documentation, Release 2.3.0

setUp() (seed.tests.test_admin_views.AdminViewsTest
method), 109

attribute), 92
source_eui_pint (seed.models.properties.PropertyState

source_eui_weather normalized
(seed.models.properties.PropertyState at-

setUp() (seed.tests.test_decorators.RequireOrganizationIDTests attribute), 92
method), 109

setUp() (seed.tests.test_decorators.TestDecorators
method), 110

setUp() (seed.tests.test_tasks.TestTasks method), 110

setUp() (seed.tests.test_views.DefaultColumnsViewTests
method), 110

setUp() (seed.tests.test_views.GetDatasets ViewsTests

method), 111

setUp() (seed.tests.test_views.ImportFile ViewsTests
method), 111

setUp() (seed.tests.test_views.Inventory ViewTests

method), 111

setUp() (seed.tests.test_views.MainViewTests method),
112

setUp() (seed.tests.test_views.TestMCM Views method),
112

setUp() (seed.tests.tests.UtilsTests method), 112

setUp() (seed.tests.util.DeleteModelsTestCase method),
113

shared_field_type (seed.models.columns.Column at-
tribute), 63

SHARED_FIELD_TYPES
(seed.models.columns.Column attribute),
60

SHARED_NONE (seed.models.columns.Column at-
tribute), 60

SHARED_PUBLIC (seed.models.columns.Column at-
tribute), 60

show_shared_buildings (seed.landing.models.SEEDUser
attribute), 57

signup() (in module seed.landing.views), 58

SignupTokenGenerator (class in seed.token_generators),
118

simulation (seed.models.properties.PropertyState at-
tribute), 91

site_eui (seed.models.properties.PropertyState attribute),
91

site_eui_modeled (seed.models.properties.PropertyState
attribute), 91

site_eui_pint (seed.models.properties.PropertyState at-
tribute), 91

site_eui_weather_normalized
(seed.models.properties.PropertyState at-
tribute), 91

site_eui_weather_normalized_pint
(seed.models.properties.PropertyState at-
tribute), 91

slug (seed.models.projects.Project attribute), 77

source_eui (seed.models.properties.PropertyState — at-
tribute), 91

source_eui_modeled (seed.models.properties.PropertyState

tribute), 92
source_eui_weather_normalized_pint
(seed.models.properties.PropertyState at-
tribute), 92
source_type (seed.models.columns.ColumnMapping at-
tribute), 65

source_type (seed.models.properties.PropertyState
attribute), 92
space_alerts (seed.models.properties.PropertyState

attribute), 92

start (seed.models.cycles.Cycle attribute), 67

start_date (seed.models.models.Compliance attribute), 70

state (seed.models.properties.PropertyAuditLog at-
tribute), 84

state (seed.models.properties.PropertyState attribute), 92

state (seed.models.properties.Property View attribute), 95

state (seed.models.tax_lots.TaxLotAuditLog attribute), 98

state (seed.models.tax_lots.TaxLotState attribute), 102

state (seed.models.tax_lots. TaxLotView attribute), 104

state_id (seed.models.properties.PropertyAuditLog at-
tribute), 85

state_id (seed.models.properties.PropertyView attribute),
95

state_id (seed.models.tax_lots.TaxLotAuditLog at-
tribute), 99

state_id (seed.models.tax_lots. TaxLotView attribute), 104

status (seed.models.projects.Project attribute), 77

STATUS_CHOICES (seed.models.projects.Project
attribute), 75

StatusLabel (class in seed.models.models), 72

StatusLabel.DoesNotExist, 72

StatusLabel.MultipleObjectsReturned, 72

super_organization (seed.models.columns.ColumnMapping
attribute), 65

super_organization (seed.models.models.CustomBuildingHeaders
attribute), 71

super_organization (seed.models.models.StatusLabel at-
tribute), 74

super_organization (seed.models.projects.Project at-
tribute), 77

super_organization_id (seed.models.columns.ColumnMapping
attribute), 65

super_organization_id (seed.models.models.CustomBuildingHeaders
attribute), 71

super_organization_id (seed.models.models.StatusLabel
attribute), 74

super_organization_id (seed.models.projects.Project at-
tribute), 77

Index

163

SEED Platform Documentation, Release 2.3.0

T

TABLE (seed.managers.json.JsonQuerySet attribute), 59

table_name (seed.models.columns.Column attribute), 63

tax_lot_states() (seed.models.properties.Property View
method), 95

tax_lot_views() (seed.models.properties.Property View
method), 95

TaxLot (class in seed.models.tax_lots), 95

taxlot (seed.models.tax_lots. TaxLotView attribute), 104

TaxLot.DoesNotExist, 95

TaxLot.MultipleObjectsReturned, 95

taxlot_count (seed.models.projects.Project attribute), 77

taxlot_id (seed.models.tax_lots. TaxLotView attribute),
104

taxlot_set (seed.models.models.StatusLabel attribute), 74

taxlot_view (seed.models.projects.ProjectTaxLotView at-
tribute), 80

taxlot_view_id (seed.models.projects.ProjectTaxLotView
attribute), 80

taxlot_views (seed.models.projects.Project attribute), 78

TaxLotAuditLog (class in seed.models.tax_lots), 97

TaxLotAuditLog.DoesNotExist, 97

TaxLotAuditLog.MultipleObjectsReturned, 97

taxlotauditlog_parent! (seed.models.tax_lots.TaxLotAuditLog

attribute), 99

taxlotauditlog_parent2 (seed.models.tax_lots. TaxLotAuditLog

attribute), 99
taxlotauditlog_parent_statel

(seed.models.tax_lots. TaxLotState attribute),
102

taxlotauditlog_parent_state2
(seed.models.tax_lots. TaxLotState attribute),

102

taxlotauditlog_state (seed.models.tax_lots. TaxLotState
attribute), 102

taxlotauditlog_view (seed.models.tax_lots. TaxLotView
attribute), 104

taxlotproperty_set (seed.models.cycles.Cycle attribute),
67

taxlotproperty_set (seed.models.properties.Property View
attribute), 95

taxlotproperty_set (seed.models.tax_lots. TaxLotView at-
tribute), 105

TaxLotState (class in seed.models.tax_lots), 99

TaxLotState.DoesNotExist, 99

TaxLotState.MultipleObjectsReturned, 99

TaxLotView (class in seed.models.tax_lots), 103

TaxLotView.DoesNotExist, 103

TaxLotView.MultipleObjectsReturned, 103

taxlotview_set (seed.models.cycles.Cycle attribute), 67

taxlotview_set (seed.models.tax_lots. TaxLotState at-
tribute), 102

tearDown() (seed.tests.util.DeleteModelsTestCase
method), 113

test_add_org() (seed.tests.test_admin_views.AdminViewsTest
method), 109

test_add_org_dupe() (seed.tests.test_admin_views.AdminViewsTest
method), 109

test_add_user_existing_org()
(seed.tests.test_admin_views.AdminViewsTest
method), 109

test_add_user_new_org()
(seed.tests.test_admin_views.AdminViewsTest
method), 109

test_add_user_no_org() (seed.tests.test_admin_views.AdminViewsTest
method), 109

test_ajax_request_class_dict()
(seed.tests.test_decorators.ClassDecoratorTests
method), 109

test_ajax_request_class_dict_status_error()
(seed.tests.test_decorators.ClassDecoratorTests
method), 109

test_ajax_request_class_dict_status_false()
(seed.tests.test_decorators.ClassDecoratorTests
method), 109

test_ajax_request_class_format_type()

(seed.tests.test_decorators.ClassDecoratorTests

method), 109

test_audit() (seed.audit_logs.tests. AuditLogModelTests

method), 39

test_audit_save() (seed.audit_logs.tests. AuditLogModelTests
method), 39

test_audit_update() (seed.audit_logs.tests.AuditLogModelTests
method), 39

test_basic_compliance_creation()
(seed.tests.tests.ComplianceTestCase method),
112

test_basic_project_creation()
(seed.tests.tests.ProjectTestCase
112

test_cc_number() (seed.test_helpers.factory.helpers.DjangoFunctionalFacto
class method), 108

test_create_dataset() (seed.tests.test_views. TestMCM Views
method), 112

test_create_note() (seed.audit_logs.tests.AuditLogViewTests
method), 39

test_delete_dataset() (seed.tests.test_views.GetDatasets ViewsTests
method), 111

test_delete_file() (seed.tests.test_views.ImportFile ViewsTests
method), 111

test_delete_organization()
(seed.tests.test_tasks.TestTasks
110

test_delete_organization_doesnt_delete_user_if_multiple_memberships()
(seed.tests.test_tasks.TestTasks method), 110

test_generic_relation() (seed.audit_logs.tests. AuditLogModelTests
method), 39

test_get_all_audit_logs_for_an_org()

method),

method),

164

Index

SEED Platform Documentation, Release 2.3.0

(seed.audit_logs.tests. AuditLogModelTests

method), 39

(seed.tests.test_views.Inventory View Tests
method), 111

test_get_all_columns() (seed.tests.test_views.DefaultColumms¥igeilgatoperties_with_taxlots()

method), 111

(seed.tests.test_views.Inventory ViewTests

test_get_building_logs() (seed.audit_logs.tests.AuditLogViewTests method), 111

method), 40

test_get_buildings_count_for_user()
(seed.tests.tests.UtilsTests method), 113

test_get_column_mapping_suggestions()
(seed.tests.test_views.TestMCM Views
method), 112

test_get_column_mapping_suggestions_pm_file()
(seed.tests.test_views.TestMCM Views
method), 112

test_get_column_mapping_suggestions_with_columns()

(seed.tests.test_views.TestMCM Views
method), 112

test_get_cycles() (seed.tests.test_views.Inventory ViewTests

method), 111

test_get_dataset() (seed.tests.test_views.GetDatasets ViewsTests

method), 111

test_get_property() (seed.tests.test_views.Inventory View Tests
method), 111

test_get_property_columns()
(seed.tests.test_views.Inventory ViewTests
method), 111

test_get_property_multiple_taxlots()
(seed.tests.test_views.Inventory View Tests
method), 111

test_get_raw_column_names()
(seed.tests.test_views.TestMCM Views
method), 112

test_get_taxlot() (seed.tests.test_views.Inventory View Tests
method), 111

test_get_taxlot_columns()

(seed.tests.test_views.Inventory ViewTests

method), 111

test_get_datasets() (seed.tests.test_views.GetDatasets ViewsTests get_taxlots() (seed.tests.test_views.Inventory ViewTests

method), 111
test_get_datasets_count()

(seed.tests.test_views.GetDatasets ViewsTests

method), 111
test_get_datasets_count_invalid()

(seed.tests.test_views.GetDatasets ViewsTests

method), 111

method), 111
test_get_taxlots_empty_page()
(seed.tests.test_views.Inventory ViewTests
method), 111
test_get_taxlots_extra_data()
(seed.tests.test_views.Inventory View Tests
method), 111

test_get_import_file() (seed.tests.test_views.ImportFileView&Besget_taxlots_missing_jurisdiction_tax_lot_id()

method), 111
test_get_matching_results()

(seed.tests.test_views.ImportFileViewsTests

method), 111

test_get_prog_key() (seed.tests.test_decorators.TestDecorators

method), 110

test_get_properties() (seed.tests.test_views.Inventory View Tests

method), 111
test_get_properties_cycle_id()
(seed.tests.test_views.Inventory ViewTests
method), 111
test_get_properties_empty_page()
(seed.tests.test_views.Inventory View Tests
method), 111
test_get_properties_page_not_an_integer()
(seed.tests.test_views.Inventory View Tests
method), 111
test_get_properties_pint_fields()
(seed.tests.test_views.Inventory View Tests
method), 111
test_get_properties_property_extra_data()
(seed.tests.test_views.Inventory ViewTests
method), 111
test_get_properties_taxlot_extra_data()

(seed.tests.test_views.Inventory ViewTests
method), 112

test_get_taxlots_multiple_taxlots()

(seed.tests.test_views.Inventory ViewTests

method), 112

test_get_taxlots_no_cycle_id()

(seed.tests.test_views.Inventory View Tests

method), 112

test_get_taxlots_page_not_an_integer()
(seed.tests.test_views.Inventory ViewTests
method), 112

test_home() (seed.tests.test_views.MainViewTests
method), 112

test_increment_cache() (seed.tests.test_decorators.TestDecorators
method), 110

test_locking() (seed.tests.test_decorators.TestDecorators
method), 110

test_locking_w_exception()
(seed.tests.test_decorators.TestDecorators
method), 110

test_model___unicode__()
(seed.audit_logs.tests. AuditLogModelTests
method), 39

test_note() (seed.audit_logs.tests.AuditLogModelTests

Index

165

SEED Platform Documentation, Release 2.3.0

method), 39

to_dict() (seed.audit_logs.models.AuditLog method), 38

test_note_save() (seed.audit_logs.tests. AuditLogModel Teststo_dict() (seed.models.columns.Column method), 63

method), 39

test_progress() (seed.tests.test_decorators.TestDecorators
method), 110

test_progress() (seed.tests.test_views.TestMCM Views
method), 112

test_require_organization_id_class_no_org_id()
(seed.tests.test_decorators.ClassDecoratorTests
method), 109

test_require_organization_id_class_org_id()
(seed.tests.test_decorators.ClassDecoratorTests
method), 109

test_require_organization_id_class_org_id_not_int()
(seed.tests.test_decorators.ClassDecoratorTests
method), 109

test_require_organization_id_fail_no_key()

to_dict() (seed.models.columns.ColumnMapping

method), 65

to_dict() (seed.models.models.Compliance method), 70

to_dict() (seed.models.models.StatusLabel method), 74

to_dict() (seed.models.projects.Project method), 78

to_dict() (seed.models.properties.PropertyState method),
92

to_dict() (seed.models.tax_lots. TaxLotState method), 102

transfer() (seed.views.projects.ProjectViewSet method),
132

U

ubid (seed.models.properties.PropertyState attribute), 92
Unit (class in seed.models.models), 74
unit (seed.models.columns.Column attribute), 63

(seed.tests.test_decorators.RequireOrganizationIDUastsDoesNotExist, 74

method), 109
test_require_organization_id_fail_not_numeric()

Unit.MultipleObjectsReturned, 74
unit_id (seed.models.columns.Column attribute), 63

(seed.tests.test_decorators.RequireOrganizationIDifgittsname (seed.models.models.Unit attribute), 75

method), 109
test_require_organization_id_success_integer()

unit_type (seed.models.models.Unit attribute), 75
units_pint (seed.models.columns.Column attribute), 63

(seed.tests.test_decorators.RequireOrganizationIDiligkisked (seed.tests.test_decorators. TestDecorators — at-

method), 110
test_require_organization_id_success_string()

(seed.tests.test_decorators.RequireOrganizationIDTests

method), 110
test_save_column_mappings()
(seed.tests.test_views.TestMCM Views
method), 112
test_save_column_mappings_idempotent()
(seed.tests.test_views.TestMCM Views
method), 112
test_set_default_columns()

(seed.tests.test_views.DefaultColumnsViewTests UrlBreadcrumbNode

method), 111

tribute), 110
(seed.audit_logs.models.AuditLogQuerySet

method), 39

update() (seed.views.projects.ProjectViewSet method),
132

update_details() (seed.views.projects.ProjectViewSet
method), 133

update_model() (in module seed.views.projects), 134

update_note() (in module seed.audit_logs.views), 41

updated (seed.models.properties.Property attribute), 82

updated (seed.models.tax_lots. TaxLot attribute), 96

(class in

seed.templatetags.breadcrumbs), 106

update()

test_signup_process() (seed.tests.test_admin_views.Admin Miswsdsiription (seed.models.properties.PropertyState at-

method), 109
test_signup_process_force_lowercase_email()
(seed.tests.test_admin_views.AdminViewsTest
method), 109
test_simple_login()
method), 58

(seed.landing.tests.UserLoginTest

tribute), 92

use_for_related_fields (seed.audit_logs.models.AuditLogManager
attribute), 39

use_for_related_fields (seed.data_importer.managers.NotDeletedManager
attribute), 42

user (seed.audit_logs.models.AuditLog attribute), 38

test_update_dataset() (seed.tests.test_views.GetDatasets Viewsgesteed. models.columns.ColumnMapping attribute),

method), 111

65

test_update_note() (seed.audit_logs.tests. AuditLogViewTestaser (seed.models.cycles.Cycle attribute), 68

method), 40
TestDecorators (class in seed.tests.test_decorators), 110
TestException, 110
TestMCM Views (class in seed.tests.test_views), 112
TestTasks (class in seed.tests.test_tasks), 110
timeseries() (seed.views.meters.MeterViewSet method),
127

user_id (seed.audit_logs.models.AuditLog attribute), 39

user_id (seed.models.columns.ColumnMapping at-
tribute), 65

user_id (seed.models.cycles.Cycle attribute), 68

user_permissions (seed.landing.models.SEEDUser
attribute), 58

UserLoginTest (class in seed.landing.tests), 58

166

Index

SEED Platform Documentation, Release 2.3.0

username (seed.landing.models.SEEDUser attribute), 58

USERNAME_FIELD (seed.landing.models.SEEDUser
attribute), 53

UtilsTests (class in seed.tests.tests), 112

\Y

valid_test_cc_number() (seed.test_helpers.factory.helpers.DjangoFunctionalFactory
class method), 108

validate() (seed.utils.api.OrgValidateMixin method), 121

validate_org() (seed.utils.api.OrgValidateMixin method),
121

value (seed.models.models.AttributeOption attribute), 68

value_name (seed.models.models.EnumValue attribute),
72

value_source (seed.models.models.AttributeOption at-
tribute), 68

values (seed.models.models.EnumValue attribute), 72

view (seed.models.properties.PropertyAuditLog at-
tribute), 85

view (seed.models.tax_lots.TaxLotAuditLog attribute),
99

view_id (seed.models.properties.PropertyAuditLog at-
tribute), 85

view_id (seed.models.tax_lots.TaxLotAuditLog at-
tribute), 99

ViewModels (seed.views.projects.ProjectViewSet at-
tribute), 127

views (seed.models.properties.Property attribute), 82

views (seed.models.tax_lots.TaxLot attribute), 96

W

WHITE_CHOICE (seed.models.models.StatusLabel at-
tribute), 73

Y

year_built (seed.models.properties.PropertyState at-
tribute), 92

year_ending (seed.models.properties.PropertyState at-
tribute), 92

Index 167

	Getting Started
	Development Setup

	Deployment Guide
	AWS Setup
	General Linux Setup
	Monitoring

	API
	Authentication
	Payloads
	Responses
	API Endpoints

	Data Model
	parents and children
	manual-matching vs auto-matching
	what really happens to the BuildingSnapshot table on import (and when)
	what really happens to the CanonicalBuilding table on import (and when)
	organization
	*_source_id fields
	extra_data
	saving and possible data loss

	Mapping
	Import
	Mapping
	Matching
	Pairing

	Modules
	Audit Logs Package
	Configuration
	Data Package
	Data Importer Package
	Features Package
	Green Button Package
	Landing Package
	Library Packages
	Mapping Package
	Managers Package
	Models
	Public Package
	SEED Package
	Serializers Package
	URLs Package
	Utilities Package
	Views Package

	Developer Resources
	General Notes
	Django Notes
	AngularJS Integration Notes
	Logging
	BEDES Compliance and Managing Columns
	Resetting the Database
	Testing

	License
	Help
	For SEED-Platform Users
	For SEED-Platform Developers

	Frequently Asked Questions
	Questions
	Issues

	Updating this documentation
	Indices and tables
	Python Module Index

