
SEED Platform Documentation
Release 2.13.0

The Regents of the University of California, through Lawrence Berkeley National Laboratory

May 27, 2022

CONTENTS

1 Getting Started 3
1.1 Development Setup . 3

2 Deployment Guide 13
2.1 AWS Setup . 13
2.2 General Linux Setup . 16
2.3 Docker Deployment on AWS . 21
2.4 Kubernetes Deployment Guide with Helm . 23
2.5 Migrations . 28
2.6 Monitoring . 28

3 API 29
3.1 Authentication . 29
3.2 Payloads . 29
3.3 Responses . 30
3.4 API Endpoints . 30

4 Data Model 31
4.1 parents and children . 35
4.2 manual-matching vs auto-matching . 36
4.3 what really happens to the BuildingSnapshot table on import (and when) 37
4.4 what really happens to the CanonicalBuilding table on import (and when) 39
4.5 organization . 39
4.6 *_source_id fields . 40
4.7 extra_data . 40
4.8 saving and possible data loss . 40

5 Data Quality 43

6 Mapping 45
6.1 Import . 45
6.2 Mapping . 45
6.3 Matching . 46
6.4 Pairing . 46

7 Modules 47
7.1 Configuration . 47
7.2 Data Package . 48
7.3 Data Importer Package . 48
7.4 Features Package . 48
7.5 Landing Package . 48

i

7.6 Library Packages . 49
7.7 Mapping Package . 49
7.8 Managers Package . 49
7.9 Models . 50
7.10 Public Package . 50
7.11 SEED Package . 50
7.12 Serializers Package . 52
7.13 URLs Package . 52
7.14 Utilities Package . 52
7.15 Views Package . 52

8 Developer Resources 53
8.1 General Notes . 53
8.2 Django Notes . 54
8.3 NginX Notes . 56
8.4 AngularJS Integration Notes . 56
8.5 Logging . 57
8.6 BEDES Compliance and Managing Columns . 57
8.7 Resetting the Database . 58
8.8 Restoring a Database Dump . 58
8.9 Migrating the Database . 59
8.10 Testing . 59
8.11 Best Practices . 60
8.12 Release Instructions . 60

9 License 63

10 Help 65
10.1 For SEED-Platform Users . 65
10.2 For SEED-Platform Developers . 65

11 Frequently Asked Questions 67
11.1 Questions . 67
11.2 Issues . 68

12 Updating this documentation 69

13 Indices and tables 71

Python Module Index 73

Index 75

ii

SEED Platform Documentation, Release 2.13.0

The Standard Energy Efficiency Data (SEED) Platform™ is a web-based application that helps organizations easily
manage data on the energy performance of large groups of buildings. Users can combine data from multiple sources,
clean and validate it, and share the information with others. The software application provides an easy, flexible, and cost-
effective method to improve the quality and availability of data to help demonstrate the economic and environmental
benefits of energy efficiency, to implement programs, and to target investment activity.

The SEED application is written in Python/Django, with AngularJS, Bootstrap, and other JavaScript libraries used for
the front-end. The back-end database is required to be PostgreSQL.

The SEED web application provides both a browser-based interface for users to upload and manage their building data,
as well as a full set of APIs that app developers can use to access these same data management functions.

Work on SEED Platform is managed by the National Renewable Energy Laboratory, with funding from the U.S. De-
partment of Energy.

CONTENTS 1

SEED Platform Documentation, Release 2.13.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 Development Setup

1.1.1 Installation on OSX

These instructions are for installing and running SEED on Mac OSX in development mode.

Quick Installation Instructions

This section is intended for developers who may already have their machine ready for general development. If this is
not the case, skip to Prerequisites. Note that SEED uses python 3.

• install Postgres 11.1 and redis for cache and message broker

• install PostGIS 2.5 and enable it on the database using CREATE EXTENSION postgis;

• install TimescaleDB 1.5.0

• use a virtualenv (if desired)

• git clone git@github.com:seed-platform/seed.git

• create a local_untracked.py in the config/settings folder and add CACHE and DB config (example lo-
cal_untracked.py.dist)

• to enable geocoding, get MapQuest API key and attach it to your organization

• export DJANGO_SETTINGS_MODULE=config.settings.dev in all terminals used by SEED (celery terminal and
runserver terminal)

• pip install -r requirements/local.txt

– for condas python, you way need to run this command to get pip install to succeed: conda install -c
conda-forge python-crfsuite

• npm install

• ./manage.py migrate

• ./manage.py create_default_user

• ./manage.py runserver

• DJANGO_SETTINGS_MODULE=config.settings.dev celery -A seed worker -l info -c 4 –maxtasksperchild=1000
–events

• navigate to http://127.0.0.1:8000/app/#/profile/admin in your browser to add users to organizations

• main app runs at 127.0.0.1:8000/app

3

SEED Platform Documentation, Release 2.13.0

The python manage.py create_default_user will setup a default superuser which must be used to access the system the
first time. The management command can also create other superusers.

./manage.py create_default_user --username=demo@seed.lbl.gov --organization=lbl --
→˓password=demo123

Prerequisites

These instructions assume you have MacPorts or Homebrew. Your system should have the following dependencies
already installed:

• git (port install git or brew install git)

• graphviz (brew install graphviz)

• pyenv (Recommended)

Note: Although you could install Python packages globally, this is the easiest way to install Python
packages. Setting these up first will help avoid polluting your base Python installation and make it
much easier to switch between different versions of the code.

brew install pyenv
pyenv install <python3 version you want>
pyenv virtualenv <python3 version you want> seed
pyenv local seed

PostgreSQL 11.1

MacPorts:

sudo su - root
port install postgresql94-server postgresql94 postgresql94-doc
init db
mkdir -p /opt/local/var/db/postgresql94/defaultdb
chown postgres:postgres /opt/local/var/db/postgresql94/defaultdb
su postgres -c '/opt/local/lib/postgresql94/bin/initdb -D /opt/local/var/db/postgresql94/
→˓defaultdb'

At this point, you may want to add start/stop scripts or aliases to
~/.bashrc or your virtualenv ``postactivate`` script
(in ``~/.virtualenvs/{env-name}/bin/postactivate``).

alias pg_start='sudo su postgres -c "/opt/local/lib/postgresql94/bin/pg_ctl \
-D /opt/local/var/db/postgresql94/defaultdb \
-l /opt/local/var/db/postgresql94/defaultdb/postgresql.log start"'

alias pg_stop='sudo su postgres -c "/opt/local/lib/postgresql94/bin/pg_ctl \
-D /opt/local/var/db/postgresql94/defaultdb stop"'

pg_start

sudo su - postgres
PATH=$PATH:/opt/local/lib/postgresql94/bin/

4 Chapter 1. Getting Started

https://www.macports.org/
http://brew.sh/
https://github.com/pyenv/pyenv

SEED Platform Documentation, Release 2.13.0

Homebrew:

brew install postgres
follow the post install instructions to add to launchagents or call
manually with `postgres -D /usr/local/var/postgres`
Skip the remaining Postgres instructions!

Configure PostgreSQL. Replace ‘seeddb’, ‘seeduser’ with desired db/user. By default use password seedpass when
prompted. Use the code block below in development only since the seeduser is a SUPERUSER.

createuser -P seeduser
createdb `whoami`
psql -c 'CREATE DATABASE "seeddb" WITH OWNER = "seeduser";'
psql -c 'GRANT ALL PRIVILEGES ON DATABASE "seeddb" TO seeduser;'
psql -c 'ALTER ROLE seeduser SUPERUSER;'

PostGIS 2.5

MacPorts:

Assuming you're still root from installing PostgreSQL,
port install postgis2

Homebrew:

brew install postgis

Configure PostGIS:

psql -d seeddb -c "CREATE EXTENSION postgis;"

For testing, give seed user superuser access:
psql -c 'ALTER USER seeduser CREATEDB;'

If upgrading from an existing database or existing local_untracked.py file, make sure to add the MapQuest API Key
and set the database engine to ‘ENGINE’: ‘django.contrib.gis.db.backends.postgis’.

Now exit any root environments, becoming just yourself (even though it’s not that easy being green), for the remainder
of these instructions.

TimescaleDB 1.5.0

Note, as of version 1.5.0, dumping and restoring databases requires that both the source and target database have the
same version of TimescaleDB.

Downloading From Source:

Note: Installing from source should only be done
if you have a Postgres installation not maintained by Homebrew.
This installation requires C compiler (e.g., gcc or clang) and CMake version 3.4 or␣
→˓greater.

git clone https://github.com/timescale/timescaledb.git
(continues on next page)

1.1. Development Setup 5

SEED Platform Documentation, Release 2.13.0

(continued from previous page)

cd timescaledb
git checkout 1.5.0

Bootstrap the build system
./bootstrap

If OpenSSL can't be found by cmake - run the following instead
./bootstrap -DOPENSSL_ROOT_DIR=<location of OpenSSL> # e.g., -DOPENSSL_ROOT_DIR=/usr/
→˓local/opt/openssl

To build the extension
cd build && make

To install
make install

Find postgresql.conf
Then uncomment the shared_preload_libraries line changing it to the following
shared_preload_libraries = 'timescaledb'
psql -d postgres -c "SHOW config_file;"

Restart PostgreSQL instance

Python Packages

Run these commands as your normal user id.

Change to a virtualenv (using virtualenvwrapper) or do the following as a superuser. A virtualenv is usually better for
development. Set the virtualenv to seed.

workon seed

Make sure PostgreSQL command line scripts are in your PATH (if using MacPorts)

export PATH=$PATH:/opt/local/lib/postgresql94/bin

Some packages (uWSGI) may need to find your C compiler. Make sure you have ‘gcc’ on your system, and then also
export this to the CC environment variable:

export CC=gcc

Install requirements with pip

pip install -r requirements/local.txt

6 Chapter 1. Getting Started

SEED Platform Documentation, Release 2.13.0

NodeJS/npm

Install npm. You can do this by installing from nodejs.org, MacPorts, or Homebrew:

MacPorts:

sudo port install npm

Homebrew:

brew install npm

Configure Django and Databases

In the config/settings directory, there must be a file called local_untracked.py that sets up databases and a number of
other things. To create and edit this file, start by copying over the template

cd config/settings
cp local_untracked.py.dist local_untracked.py

Edit local_untracked.py. Open the file you created in your favorite editor. The PostgreSQL config section will look
something like this:

postgres DB config
DATABASES = {

'default': {
'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'seeddb',
'USER': 'seeduser',
'PASSWORD': 'seedpass',
'HOST': 'localhost',
'PORT': '5432',

}
}

You may want to comment out the AWS settings.

For Redis, edit the CACHES and CELERY_BROKER_URL values to look like this:

CACHES = {
'default': {

'BACKEND': 'redis_cache.cache.RedisCache',
'LOCATION': "127.0.0.1:6379",
'OPTIONS': {'DB': 1},
'TIMEOUT': 300

}
}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1'

1.1. Development Setup 7

https://www.npmjs.com/
http://nodejs.org/

SEED Platform Documentation, Release 2.13.0

MapQuest API Key

Register for a MapQuest API key: https://developer.mapquest.com/plan_purchase/steps/business_edition/business_
edition_free/register

Visit the Manage Keys page: https://developer.mapquest.com/user/me/apps Either create a new key or use the key
initially provided. Copy the “Consumer Key” into the target organizations MapQuest API Key field under the organi-
zation’s settings page or directly within the DB.

Run Django Migrations

Change back to the root of the repository. Now run the migration script to set up the database tables

export DJANGO_SETTINGS_MODULE=config.settings.dev
./manage.py migrate

Django Admin User

You need a Django admin (super) user.

./manage.py create_default_user --username=admin@my.org --organization=seedorg --
→˓password=badpass

Of course, you need to save this user/password somewhere, since this is what you will use to login to the SEED website.

If you want to do any API testing (and of course you do!), you will need to add an API KEY for this user. You can do
this in postgresql directly:

psql seeddb seeduser
seeddb=> update landing_seeduser set api_key='DEADBEEF' where id=1;

The ‘secret’ key DEADBEEF is hard-coded into the test scripts.

Install Redis

You need to manually install Redis for Celery to work.

MacPorts:

sudo port install redis

Homebrew:

brew install redis
follow the post install instructions to add to launchagents or
call manually with `redis-server`

8 Chapter 1. Getting Started

https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/user/me/apps

SEED Platform Documentation, Release 2.13.0

Install JavaScript Dependencies

The JS dependencies are installed using node.js package management (npm).

npm install

Start the Server

You should put the following statement in ~/.bashrc or add it to the virtualenv post-activation script (e.g., in ~/.vir-
tualenvs/seed/bin/postactivate).

export DJANGO_SETTINGS_MODULE=config.settings.dev

The combination of Redis, Celery, and Django have been encapsulated in a single shell script, which examines existing
processes and does not start duplicate instances:

./bin/start-seed.sh

When this script is done, the Django stand-alone server will be running in the foreground.

Login

Open your browser and navigate to http://127.0.0.1:8000

Login with the user/password you created before, e.g., admin@my.org and badpass.

Note: these steps have been combined into a script called start-seed.sh. The script will also not start Celery or Redis
if they already seem to be running.

1.1.2 Installation using Docker

Docker works natively on Linux, Mac OSX, and Windows 10. If you are using an older version of Windows (and some
older versions of Mac OSX), you will need to install Docker Toolbox.

Choose either Docker Native (Windows/OSX) or Docker Native (Ubuntu) to install Docker.

Docker Native (Ubuntu)

Follow instructions here.

• Install Docker Compose

1.1. Development Setup 9

http://127.0.0.1:8000
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/

SEED Platform Documentation, Release 2.13.0

Docker Native (Windows/OSX)

Following instructions for Mac or for Windows. Note that for OSX you must have docker desktop version 3.0 or later
<https://github.com/concourse/concourse/issues/6038>.

• Install Docker Compose

Building and Running Containers for Non-Development

• Run Docker Compose

docker-compose build

Be Patient . . . If the containers build successfully, then start the containers

docker volume create --name=seed_pgdata
docker volume create --name=seed_media
docker-compose up

Note that you may need to build the containers a couple times for everything to converge
• Login to container

The docker-compose file creates a default user and password. Below are the defaults but can be
overridden by setting environment variables.

username: user@seed-platform.org
password: super-secret-password

Note: Don’t forget that you need to reset your default username and password if you are going to use these Docker
images in production mode!

Using Docker for Development

The development environment is configured for live reloading (ie restart webserver when files change) and debugging.
It builds off the base docker-compose.yml, so it’s necessary to specify the files being used in docker-compose commands
as seen below.

Build

create volumes for the database and media directory
docker volume create --name=seed_pgdata
docker volume create --name=seed_media

build the images
docker-compose -f docker-compose.yml -f docker-compose.dev.yml build

10 Chapter 1. Getting Started

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/compose/install/
https://www.youtube.com/watch?v=f4hkPn0Un_Q

SEED Platform Documentation, Release 2.13.0

Running the Server

NOTE: the server config is sourced from config.settings.docker_dev, which will include your local_untracked.py if it
exists. If you have a local_untracked.py, make sure it doesn’t overwrite the database or celery configuration!

docker-compose -f docker-compose.yml -f docker-compose.dev.yml up

If the server doesn’t start successfully, and docker-compose logs doesn’t help, the django development server prob-
ably failed to start due to an error in your config or code. Unfortunately docker/django logging doesn’t appear to work
when the container is first started. Just try running the server yourself with docker exec, and see what the output is.

The development docker-compose file has some configurable parameters for specifying volumes to use:

• SEED_DB_VOLUME: the name of the docker volume to mount for postgres

• SEED_MEDIA_VOLUME: the name of the docker volume to mount for the seed media folder

Docker will use environment variables from the shell or from a .env file to set these values.

This is useful if you want to switch between different databases for testing. For example, if you want to create a separate
volume for storing a production backup, you could do the following

docker volume create --name=seed_pgdata_prod
SEED_DB_VOLUME=seed_pgdata_prod docker-compose -f docker-compose.yml -f docker-compose.
→˓dev.yml up

NOTE: you’ll need to run docker-compose down to remove the containers before you can restart the containers
connecting to different volumes.

Running Tests

While the containers are running (ie after running the docker-compose up command), use docker exec to run tests in
the web container:

docker exec -it seed_web ./manage.py test --settings config.settings.docker_dev

Add the setting --nocapture in order to see stdout while running tests. You will need to do this in order to make
use of debugging as described below or the output to your debug commands will not display until after the break point
has passed and the tests are finished.

Also worth noting: output from logging (_log.debug, etc) will not display in any situation unless a test fails.

Debugging

To use pdb on the server, the web container has remote-pdb installed. In your code, insert the following

import remote_pdb; remote_pdb.set_trace()

Once the breakpoint is triggered, you should see the web container log something like “RemotePdb session open at
127.0.0.1:41653, waiting for connection . . . ”. To connect to the remote session, run netcat from inside the container
(using the appropriate port).

docker exec -it seed_web nc 127.0.0.1:41653

1.1. Development Setup 11

https://github.com/ionelmc/python-remote-pdb

SEED Platform Documentation, Release 2.13.0

12 Chapter 1. Getting Started

CHAPTER

TWO

DEPLOYMENT GUIDE

SEED is intended to be installed on Linux instances in the cloud (e.g. AWS), and on local hardware. SEED Platform
does not officially support Windows for production deployment. If this is desired, see the Django notes.

2.1 AWS Setup

Amazon Web Services (AWS) provides the preferred hosting for the SEED Platform.

seed is a Django Project and Django’s documentation is an excellent place for general understanding of this project’s
layout.

2.1.1 Prerequisites

Ubuntu server 18.04 LTS

Note: These instructions have not been updated for Ubuntu 18.04. It is recommended to use Docker-based deploy-
ments.

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install -y libpq-dev python-dev python-pip libatlas-base-dev \
gfortran build-essential g++ npm libxml2-dev libxslt1-dev git mercurial \
libssl-dev libffi-dev curl uwsgi-core uwsgi-plugin-python

PostgreSQL and Redis are not included in the above commands. For a quick installation on AWS it is okay to install
PostgreSQL and Redis locally on the AWS instance. If a more permanent and scalable solution, it is recommended to
use AWS’s hosted Redis (ElastiCache) and PostgreSQL service.

Note: postgresql >=9.4 is required to support JSON Type

To install PostgreSQL and Redis locally
sudo apt-get install redis-server
sudo apt-get install postgresql postgresql-contrib

13

https://docs.djangoproject.com/en/1.7/howto/windows/
http://aws.amazon.com/
https://www.djangoproject.com/
https://www.postgresql.org/docs/9.4/datatype-json.html

SEED Platform Documentation, Release 2.13.0

Amazon Web Services (AWS) Dependencies

The following AWS services can be used for SEED but are not required:

• RDS (PostgreSQL >=9.4)

• ElastiCache (redis)

• SES

2.1.2 Python Dependencies

Clone the SEED repository from github

$ git clone git@github.com:SEED-platform/seed.git

enter the repo and install the python dependencies from requirements

$ cd seed
$ sudo pip install -r requirements/aws.txt

2.1.3 JavaScript Dependencies

npm is required to install the JS dependencies.

$ sudo apt-get install build-essential
$ sudo apt-get install curl

$ npm install

2.1.4 Database Configuration

Copy the local_untracked.py.dist file in the config/settings directory to config/settings/
local_untracked.py, and add a DATABASES configuration with your database username, password, host, and
port. Your database configuration can point to an AWS RDS instance or a PostgreSQL 9.4 database instance you have
manually installed within your infrastructure.

Database
DATABASES = {

'default': {
'ENGINE':'django.db.backends.postgresql_psycopg2',
'NAME': 'seed',
'USER': '',
'PASSWORD': '',
'HOST': '',
'PORT': '',

}
}

Note: In the above database configuration, seed is the database name, this is arbitrary and any valid name can be used
as long as the database exists.

14 Chapter 2. Deployment Guide

https://github.com/SEED-platform/seed/blob/main/requirements/aws.txt

SEED Platform Documentation, Release 2.13.0

create the database within the postgres psql shell:

CREATE DATABASE seed;

or from the command line:

createdb seed

create the database tables and migrations:

python manage.py syncdb
python manage.py migrate

create a superuser to access the system

$ python manage.py create_default_user --username=demo@example.com --
→˓organization=example --password=demo123

Note: Every user must be tied to an organization, visit /app/#/profile/admin as the superuser to create parent
organizations and add users to them.

2.1.5 Cache and Message Broker

The SEED project relies on redis for both cache and message brokering, and is available as an AWS ElastiCache service.
local_untracked.py should be updated with the CACHES and CELERY_BROKER_URL settings.

CACHES = {
'default': {

'BACKEND': 'redis_cache.cache.RedisCache',
'LOCATION': "seed-core-cache.ntmprk.0001.usw2.cache.amazonaws.com:6379",
'OPTIONS': { 'DB': 1 },
'TIMEOUT': 300

}
}
CELERY_BROKER_URL = 'redis://seed-core-cache.ntmprk.0001.usw2.cache.amazonaws.com:6379/1'

2.1.6 Running Celery the Background Task Worker

Celery is used for background tasks (saving data, matching, creating projects, etc) and must be connected to the message
broker queue. From the project directory, celery can be started:

celery -A seed worker -l INFO -c 2 -B --events --maxtasksperchild 1000

2.1. AWS Setup 15

http://redis.io/
https://aws.amazon.com/elasticache/
http://www.celeryproject.org/

SEED Platform Documentation, Release 2.13.0

2.2 General Linux Setup

While Amazon Web Services (AWS) provides the preferred hosting for SEED, running on a bare-bones Linux server
follows a similar setup, replacing the AWS services with their Linux package counterparts, namely: PostgreSQL and
Redis.

SEED is a Django project and Django’s documentation is an excellent place to general understanding of this project’s
layout.

2.2.1 Prerequisites

Ubuntu server/desktop 16.04 or newer (18.04 recommended)

Install the following base packages to run SEED:

sudo add-apt-repository ppa:timescale/timescaledb-ppa
sudo apt update
sudo apt upgrade
sudo apt install libpq-dev python3-dev python3-pip libatlas-base-dev \
gfortran build-essential nodejs npm libxml2-dev libxslt1-dev git \
libssl-dev libffi-dev curl uwsgi-core uwsgi-plugin-python mercurial
sudo apt install gdal-bin postgis
sudo apt install redis-server
sudo apt install timescaledb-postgresql-10 postgresql-contrib

For running selenium/protractor
sudo apt install default-jre

Note: postgresql >=9.3 is required to support JSON Type

2.2.2 Configure PostgreSQL

Replace ‘seeddb’, ‘seeduser’ with desired db/user. By default use password seedpass when prompted

$ sudo timescaledb-tune
$ sudo service postgresql restart
$ sudo su - postgres
$ createuser -P "seeduser"
$ createdb "seeddb" --owner="seeduser"
$ psql
postgres=# GRANT ALL PRIVILEGES ON DATABASE "seeddb" TO "seeduser";
postgres=# ALTER USER "seeduser" CREATEDB CREATEROLE SUPERUSER;
postgres=# \q
$ exit

16 Chapter 2. Deployment Guide

http://aws.amazon.com/
https://www.djangoproject.com/
http://www.postgresql.org/docs/9.3/static/datatype-json.html

SEED Platform Documentation, Release 2.13.0

2.2.3 Python Dependencies

clone the seed repository from github

$ git clone git@github.com:SEED-platform/seed.git

enter the repo and install the python dependencies from requirements

$ cd seed
$ pip3 install -r requirements/local.txt

2.2.4 JavaScript Dependencies

$ npm install

2.2.5 Django Database Configuration

Copy the local_untracked.py.dist file in the config/settings directory to config/settings/
local_untracked.py, and add a DATABASES configuration with your database username, password, host, and
port. Your database configuration can point to an AWS RDS instance or a PostgreSQL 9.4 database instance you have
manually installed within your infrastructure.

Database
DATABASES = {

'default': {
'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'seeddb',
'USER': 'seeduser',
'PASSWORD': '<PASSWORD>',
'HOST': 'localhost',
'PORT': '5432',

}
}

Note: Other databases could be used such as MySQL, but are not supported due to the postgres-specific JSON Type

In in the above database configuration, seed is the database name, this is arbitrary and any valid name can be used as
long as the database exists. Enter the database name, user, password you set above.

The database settings can be tested using the Django management command, python3 manage.py dbshell to con-
nect to the configured database.

create the database tables and migrations:

$ python3 manage.py migrate

2.2. General Linux Setup 17

https://github.com/SEED-platform/seed/blob/main/requirements/local.txt
http://www.postgresql.org/docs/9.3/static/datatype-json.html

SEED Platform Documentation, Release 2.13.0

2.2.6 Cache and Message Broker

The SEED project relies on redis for both cache and message brokering, and is available as an AWS ElastiCache service
or with the redis-server Linux package. (sudo apt install redis-server)

local_untracked.py should be updated with the CACHES and CELERY_BROKER_URL settings.

CACHES = {
'default': {

'BACKEND': 'redis_cache.cache.RedisCache',
'LOCATION': '127.0.0.1:6379',
'OPTIONS': {'DB': 1},
'TIMEOUT': 300

}
}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1'

2.2.7 Creating the initial user

create a superuser to access the system

$ python3 manage.py create_default_user --username=admin@my.org --organization=lbnl --
→˓password=badpass

Note: Of course, you need to save this user/password somewhere, since this is what you will use to login to the SEED
website.

Every user must be tied to an organization, visit /app/#/profile/admin as the superuser to create parent organiza-
tions and add users to them.

2.2.8 Running celery the background task worker

Celery is used for background tasks (saving data, matching, creating projects, etc) and must be connected to the message
broker queue. From the project directory, celery can be started:

DJANGO_SETTINGS_MODULE=config.settings.dev celery -A seed worker -l info -c 2 -B --
→˓events --maxtasksperchild=1000

2.2.9 Running the development web server

The Django dev server (not for production use) can be a quick and easy way to get an instance up and running. The
dev server runs by default on port 8000 and can be run on any port. See Django’s runserver documentation for more
options.

$ python3 manage.py runserver --settings=config.settings.dev

18 Chapter 2. Deployment Guide

http://redis.io/
https://aws.amazon.com/elasticache/
http://www.celeryproject.org/
https://docs.djangoproject.com/en/1.6/ref/django-admin/#django-admin-runserver

SEED Platform Documentation, Release 2.13.0

2.2.10 Running a production web server

Our recommended web server is uwsgi sitting behind nginx. The python package uwsgi is needed for this, and should
install to /usr/local/bin/uwsgi We recommend using dj-static to load static files.

Note: The use of the dev settings file is production ready, and should be used for non-AWS installs with DEBUG set to
False for production use.

$ pip3 install uwsgi dj-static

Generate static files:

$ python3 manage.py collectstatic --settings=config.settings.prod -i package.json -i npm-
→˓shrinkwrap.json -i node_modules/openlayers-ext/index.html

Update config/settings/local_untracked.py:

DEBUG = False
static files
STATIC_ROOT = 'collected_static'
STATIC_URL = '/static/'

Start the web server (this also starts celery):

$./bin/start-seed

Warning: Note that uwsgi has port set to 80. In a production setting, a dedicated web server such as NGINX
would be receiving requests on port 80 and passing requests to uwsgi running on a different port, e.g 8000.

2.2.11 Environment Variables

The following environment variables can be set within the ~/.bashrc file to override default Django settings.

export SENTRY_DSN=https://xyz@app.getsentry.com/123
export DEBUG=False
export ONLY_HTTPS=True

2.2.12 Mail Services

AWS SES Service

In the AWS setup, we can use SES to provide an email service for Django. The service is configured in the con-
fig/settings/local_untracked.py:

EMAIL_BACKEND = 'django_ses.SESBackend'

In general, the following steps are needed to configure SES:

1. Access Amazon SES Console - Quickstart

2.2. General Linux Setup 19

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/quick-start.html

SEED Platform Documentation, Release 2.13.0

2. Login to Amazon SES Console. Verify which region we are using (e.g., us-east-1)

3. Decide on email address that will be sending the emails and add them to the SES Verified Emails.

4. Test that SES works as expected (while in the SES sandbox). Note that you will need to add the sender and
recipient emails to the verified emails while in the sandbox.

5. Update the local_untracked.py file or set the environment variables for the docker file.

6. Once ready, move the SES instance out of the sandbox. Following instructions here

7. (Optional) Set up Amazon Simple Notification Service (Amazon SNS) to notify you of bounced emails and other
issues.

8. (Optional) Use the AWS Management Console to set up Easy DKIM, which is a way to authenticate your emails.
Amazon SES console will have the values for SPF and DKIM that you need to put into your DNS.

SMTP service

Many options for setting up your own SMTP service/server or using other SMTP third party services are available and
compatible including gmail. SMTP is not configured for working within Docker at the moment.

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

2.2.13 local_untracked.py

PostgreSQL DB config
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'seed',
'USER': 'your-username',
'PASSWORD': 'your-password',
'HOST': 'your-host',
'PORT': 'your-port',

}
}

config for local storage backend
DOMAIN_URLCONFS = {'default': 'config.urls'}

CACHES = {
'default': {

'BACKEND': 'redis_cache.cache.RedisCache',
'LOCATION': '127.0.0.1:6379',
'OPTIONS': {'DB': 1},
'TIMEOUT': 300

}
}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1'

SMTP config
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

(continues on next page)

20 Chapter 2. Deployment Guide

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-email-addresses.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/request-production-access.html
https://docs.djangoproject.com/en/2.0/ref/settings/#email-backend
http://stackoverflow.com/questions/19264907/python-django-gmail-smtp-setup

SEED Platform Documentation, Release 2.13.0

(continued from previous page)

static files
STATIC_ROOT = 'collected_static'
STATIC_URL = '/static/'

2.3 Docker Deployment on AWS

Amazon Web Services (AWS) provides the preferred hosting for the SEED Platform.

seed is a Django Project and Django’s documentation is an excellent place for general understanding of this project’s
layout.

2.3.1 Installation

Ubuntu server 18.04 or newer with a m5ad.xlarge (if using in Production instance)

• After launching the instance, run the following commands to install docker.

Install any upgrades
sudo apt-get update
sudo apt-get upgrade -y

Remove any old docker engines
sudo apt-get remove docker docker-engine docker.io containerd runc

Install docker community edition
sudo apt-get update
sudo apt-get install -y apt-transport-https ca-certificates curl gnupg-agent software-
→˓properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"

sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli containerd.io
Add your user to the docker group
sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker

Note: It is okay if the first command fails

• Verify that the DNS is working correctly. Run the following and verify the response lists IPs (v6 most likely)

verify that the dns resolves
docker run --rm seedplatform/seed getent hosts seed-platform.org
or
docker run --rm tutum/dnsutils nslookup email.us-west-2.amazonaws.com

2.3. Docker Deployment on AWS 21

http://aws.amazon.com/
https://www.djangoproject.com/

SEED Platform Documentation, Release 2.13.0

• Install Docker compose

sudo curl -L "https://github.com/docker/compose/releases/download/1.25.4/docker-compose-
→˓$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

• Checkout SEED (or install from the releases).

git clone

• Add in the Server setting into profile.d. For example add the content below (appropriately filled out) into
/etc/profile.d/seed.sh

export POSTGRES_USER=seed
export POSTGRES_DB=seed
export POSTGRES_PASSWORD=GDEus3fasd1askj89QkAldjfX
export POSTGRES_PORT=5432
export SECRET_KEY="96=7jg%_&1-z9c9qwwu2@w$hb3r322yf3lz@*ekw-1@ly-%+^"

The admin user is only valid only until the database is restored
export SEED_ADMIN_USER=user@seed-platform.org
export SEED_ADMIN_PASSWORD="7FeBWal38*&k3jlfa92lakj8ih4"
export SEED_ADMIN_ORG=default

For SES
export AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY>
export AWS_SECRET_ACCESS_KEY=<AWS_SECRET_KEY>
export AWS_SES_REGION_NAME=us-west-2
export AWS_SES_REGION_ENDPOINT=email.us-west-2.amazonaws.com
export SERVER_EMAIL=user@seed-platform.org

• Before launching the first time, make sure the persistent volumes and the backup directory exist.

docker volume create --name=seed_pgdata
docker volume create --name=seed_media

mkdir -p $HOME/seed-backups

Note: Make sure to have the seed-backups in your path, otherwise the db-postgres container will not launch.

• Launch the project

cd <checkout dir>
./deploy.sh

22 Chapter 2. Deployment Guide

SEED Platform Documentation, Release 2.13.0

2.3.2 Deploying with OEP

The preferred way to deploy with Docker is using docker swarm and docker stack. Look at the deploy.sh script for
implementation details.

The short version is to simply run the command below. Note that the passing of the docker-compose.yml filename is
not required if using docker-compose.local.yml.

`bash ./deploy.sh docker-compose.local.yml `

If deploying using a custom docker-compose yml file, then simple replace the name in the command above. This would
be required if using the Open Efficiency Platform work (connecting SEED to Salesforce).

2.4 Kubernetes Deployment Guide with Helm

Kubernetes is a robust container orchestration system for easy application deployment and management. Helm takes
that a step further with by packaging up required helm “charts” into one deployment command.

2.4.1 Setup

Cluster

In order to deploy the SEED platform on a Kubernetes you will need “cluster” which will be configured by your cloud
service of choice. Each installation will be slightly different depending on the service. Below are links to quick-start
guides for provisioning a cluster and connecting. These instructions are specifically for AWS, but after the Kubernetes
cluster is launched, the helm commands can be used in the same way.

• Amazon Web Services (AWS)

• Google Cloud Platform (GCP)

• Azure (AKS)

AWS CLI Configuration

Download and configure the AWS CLI with instructions: https://docs.aws.amazon.com/cli/latest/userguide/
install-cliv2.html

aws configure
AWS Access Key ID [None]: <insert key> (from account)
AWS Secret Access Key [None]: <insert secret key> (from account)
Default region name [None]: us-east-1
Default output format [None]: json

2.4. Kubernetes Deployment Guide with Helm 23

https://github.com/SEED-platform/seed/blob/develop/deploy.sh
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough#connect-to-the-cluster
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

SEED Platform Documentation, Release 2.13.0

Kubectl

Download and install Kubectl:

• Windows

• Mac (with Homebrew) brew install kubectl ` brew install kubectl `

Kubectl is the main function in which you will be interfacing with your deployed application on your cluster. This CLI
is what connects you to your cluster that you have just provisioned. If your cloud service did not have you configure
kubectl in your cluster setup, you can download it here. Once kubectl is installed and configured to your cluster you
can run some simple commands to ensure its working properly:

#View the cluster
kubectl cluster-info

#View pods, services and replicasets (will be empty until deploying an app)
kubectl get all

All of the common kubectl commands can be found in these docs

Note: For those unfamiliar with CLIs, there are a number of GUI applications that are able to deploy on your stack
with ease. One of which is Kubernetes native application called Dashboard UI or a third-party application called Octant
brew install octant.

Helm

Helm organizes all of your Kubernetes deployment, service, and volume yml files into “charts” that can be deployed,
managed, and published with simple commands. To install Helm:

• `Windows eksctl https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-windows`_
• Mac (with Homebrew) brew install helm

EKS Control (AWS Specific)

EKSCtl is a command line tool to manage Elastic Kubernetes clusters on AWS. If not using AWS, then disregard this
section.

• Windows

• Mac (with Homebrew) brew install eksctl

To launch a cluster on using EKSCts, run the following command in the terminal (assuming adequate permissions for
the user). Also make sure to replace items in the <> brackets.

eksctl create cluster \
--name <cluster-name> \
--version 1.21 \
--region us-east-1 \
--node-type m5.large \
--nodes 1 \
--nodes-min 1 \
--nodes-max 1 \

(continues on next page)

24 Chapter 2. Deployment Guide

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-windows
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://www.stacksimplify.com/aws-eks/eks-cluster/install-aws-eksctl-kubectl-cli/#step-02-02-windows-10-install-and-configure-kubectl

SEED Platform Documentation, Release 2.13.0

(continued from previous page)

--managed \
--tags environment=<env-type, e.g., dev, prod>

Charts

SEED stores its charts in the charts directory of the Github Repo. There are two main charts that are deployed when
starting SEED on Kubernetes.

• persistentvolumes - these are the volumes to store SEED media data and SEED Postgres data

• seed - this stores all of the other deployemnt and service files for the application

Unlike persistentvolumes, the seed charts must be modified with user environment variables that will be forwarded to
the docker container for deployment. Before deployment, the user MUST set these variables to their desired values.

This chart contains the deployment specification for the SEED web container. Replace all the values in <>.

Environment variables for the web container
- env:

AWS Email service variables to send emails to new users - can be removed if not␣
→˓using this functionality.

- name: AWS_ACCESS_KEY_ID
value: <access_key_id>

- name: AWS_SECRET_ACCESS_KEY
value: <secret_access_key>

- name: AWS_SES_REGION_NAME
value: us-west-2

- name: AWS_SES_REGION_ENDPOINT
value: email.us-west-2.amazonaws.com

- name: SERVER_EMAIL
value: info@seed-platform.org

Django Variables
- name: DJANGO_SETTINGS_MODULE
value: config.settings.docker

- name: SECRET_KEY
value: <replace-secret-key>

- name: SEED_ADMIN_ORG
value: default

- name: SEED_ADMIN_PASSWORD
value: <super-secret-password>

- name: SEED_ADMIN_USER
value: <user@seed-platform.org>

Postgres variables
- name: POSTGRES_DB
value: seed

- name: POSTGRES_PASSWORD
value: <super-secret-password> # must match db-postgres-deployment.yaml and web-

→˓celery-deployment.yaml
- name: POSTGRES_PORT
value: "5432"

- name: POSTGRES_USER
value: seeduser

Bsyncr analysis variables
(continues on next page)

2.4. Kubernetes Deployment Guide with Helm 25

https://github.com/SEED-platform/seed/tree/develop/charts

SEED Platform Documentation, Release 2.13.0

(continued from previous page)

- name: BSYNCR_SERVER_PORT
value: "5000"

- name: BSYNCR_SERVER_HOST
value: bsyncr

Sentry monitoring - remove if not applicable
- name: SENTRY_JS_DSN
value: <enter-dsn>

- name: SENTRY_RAVEN_DSN
value: <enter-dsn>

Google self registration security - remove if not applicable
- name: GOOGLE_RECAPTCHA_SITE_KEY
value: <reCAPTCHA-site-key>

- name: GOOGLE_RECAPTCHA_SECRET_KEY
value: <reCAPTCHA-key>

Toggles the v2 version of the SEED API
- name: INCLUDE_SEED_V2_APIS
value: TRUE

image: seedplatform/seed:<insert deployment image version>
#versions can be found here https://github.com/SEED-platform/seed/releases/tag/v2.9.3

This chart contains the deployment specification for the Celery container to connect to Postgres. Replace the Postgres
password to match web-deployment.

- name: POSTGRES_PASSWORD
value: <super-secret-password> # must match db-postgres-deployment.yaml and web-

→˓celery-deployment.yaml

This chart contains the deployment specification for the bsyncr analysis server. Request a NOAA token from this
website.

- name: NOAA_TOKEN
value: <token>

2.4.2 Deployment

Once you are connected to your cluster and have your settings configured with the environment variables of you choice
in the charts, you are ready to deploy the app. First, make sure that the correct context is selected which is needed if
there is more than one cluster:

kubectl config get-contexts
kubectl config use-context <context-name>

Deploy the site using the helm commands in the root of the charts directory.

• helm install --generate-name persistentvolumes

• helm install --generate-name seed

You will be able to see SEED coming online with statuses like container creating, and running with:

• kubectl get all

Once all of the pods are running you will be able to hit the external ingress through the URL listed in the web service
information. It should look something like

26 Chapter 2. Deployment Guide

https://www.ncdc.noaa.gov/cdo-web/token
https://www.ncdc.noaa.gov/cdo-web/token

SEED Platform Documentation, Release 2.13.0

service/web LoadBalancer 10.100.154.227 <my-unique-url> 80:32291/TCP

2.4.3 Managing Existing Clusters

Upgrade/Redeploy the Helm Stack

To upgrade or dedeploy a helm chart, first find the helm release that you want to upgrade, then run the upgrade with
the selected chart.

helm list
helm upgrade <cluster-name> ./seed

Managing the Kubernetes Cluster (AWS Specific)

Enable kubectl to talk to one of the created clusters by running the following command in the terminal after configuring
the AWS credentials and cli.

aws eks --region <aws-region> update-kubeconfig --name <cluster-name>

Logging In

After a successful deployment in order to login you will need to create yourself as a user in the web container. To do
this, we will exec into the container and run some Django commands. * View all deployments and services, kubectl
get all * kubectl get pods * kubectl exec -it <pod-id> -- bash

Now that we are in the container, we can make a user. .. code-block:: bash

./manage.py create_default_user –username=admin@my.org –organization=seedorg –password=badpass

You can now use these credentials to log in to the SEED website.

Update web and web-celery

The command below will restart the pods and re-pull the docker images.

kubectl rollout restart deployment web && kubectl rollout restart deployment web-celery

2.4.4 Other Resources

Common kubectl actions can be found here

2.4. Kubernetes Deployment Guide with Helm 27

mailto:--username=admin@my.org
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

SEED Platform Documentation, Release 2.13.0

2.5 Migrations

Migrations are handles through Django; however, various versions have customs actions for the migrations. See the
migrations page for more information.

2.6 Monitoring

2.6.1 Sentry

Sentry can monitor your webservers for any issues. To enable sentry add the following to your local_untracked.py files
after setting up your Sentry account on sentry.io.

The RAVEN_CONFIG is used for the backend and the SENTRY_JS_DSN is used for the frontend. At the moment, it
is recommended to setup two sentry projects, one for backend and one for frontend.

import raven

RAVEN_CONFIG = {
'dsn': 'https://<user>:<key>@sentry.io/<job_id>',
If you are using git, you can also automatically configure the
release based on the git info.
'release': raven.fetch_git_sha(os.path.abspath(os.curdir)),

}
SENTRY_JS_DSN = 'https://<key>@sentry.io/<job_id>'

28 Chapter 2. Deployment Guide

CHAPTER

THREE

API

3.1 Authentication

Authentication is handled via an encoded authorization token set in a HTTP header. To request an API token, go to
/app/#/profile/developer and click ‘Get a New API Key’.

Authenticate every API request with your username (email, all lowercase) and the API key via Basic Auth. The header
is sent in the form of Authorization: Basic <credentials>, where credentials is the base64 encoding of the
email and key joined by a single colon :.

Using Python, use the requests library:

import requests

result = requests.get('https://seed-platform.org/api/version/', auth=(user_email, api_
→˓key))
print result.json()

Using curl, pass the username and API key as follows:

curl -u user_email:api_key http://seed-platform.org/api/version/

If authentication fails, the response’s status code will be 302, redirecting the user to /app/login.

3.2 Payloads

Many requests require a JSON-encoded payload and parameters in the query string of the url. A frequent requirement
is including the organization_id of the org you belong to. For example:

curl -u user_email:api_key https://seed-platform.org/api/v2/organizations/12/

Or in a JSON payload:

curl -u user_email:api_key \
-d '{"organization_id":6, "role": "viewer"}' \
https://seed-platform.org/api/v2/users/12/update_role/

Using Python:

29

https://en.wikipedia.org/wiki/Basic_access_authentication

SEED Platform Documentation, Release 2.13.0

params = {'organization_id': 6, 'role': 'viewer'}
result = requests.post('https://seed-platform.org/api/v2/users/12/update_role/',

data=json.dumps(params),
auth=(user_email, api_key))

print result.json()

3.3 Responses

Responses from all requests will be JSON-encoded objects, as specified in each endpoint’s documentation. In the case
of an error, most endpoints will return this instead of the expected payload (or an HTTP status code):

{
"status": "error",
"message": "explanation of the error here"

}

3.4 API Endpoints

A list of interactive endpoints are available by accessing the API menu item on the left navigation pane within you
account on your SEED instance.

To view a list of non-interactive endpoints without an account, view swagger on the development server.

30 Chapter 3. API

https://seed-platform.org/api/swagger/

CHAPTER

FOUR

DATA MODEL

31

SEED Platform Documentation, Release 2.13.0

32 Chapter 4. Data Model

SEED Platform Documentation, Release 2.13.0

33

SEED Platform Documentation, Release 2.13.0

34 Chapter 4. Data Model

SEED Platform Documentation, Release 2.13.0

Todo: Documentation below is out of state and needs updated.

Our primary data model is based on a tree structure with BuildingSnapshot instances as nodes of the tree and the tip
of the tree referenced by a CanonicalBuilding.

Take the following example: a user has loaded a CSV file containing information about one building and created the
first BuildingSnapshot (BS0). At this point in time, BS0 is linked to the first CanonicalBuilding (CB0), and CB0 is
also linked to BS0.

BS0 <-- CB0
BS0 --> CB0

These relations are represented in the database as foreign keys from the BuildingSnapshot table to the CanonicalBuild-
ing table, and from the CanonicalBuilding table to the BuildingSnapshot table.

The tree structure comes to fruition when a building, BS0 in our case, is matched with a new building, say BS1, enters
the system and is auto-matched.

Here BS1 entered the system and was matched with BS0. When a match occurs, a new BuildingSnapshot is created,
BS2, with the fields from the existing BuildingSnapshot, BS0, and the new BuildingSnapshot, BS1, merged together.
If both the existing and new BuildingSnapshot have data for a given field, the new record’s fields are preferred and
merged into the child, B3.

The fields from new snapshot are preferred because that is the newer of the two records from the perspective of the
system. By preferring the most recent fields this allows for evolving building snapshots over time. For example, if an
existing canonical record has a Site EUI value of 75 and some changes happen to a building that cause this to change
to 80 the user can submit a new record with that change.

All BuildingSnapshot instances point to a CanonicalBuilding.

BS0 BS1
\ /
BS2 <-- CB0

BS0 --> CB0
BS1 --> CB0
BS2 --> CB0

4.1 parents and children

BuildingSnapshots also have linkage to other BuildingSnapshots in order to keep track of their parents and children.
This is represented in the Django model as a many-to-many relation from BuildingSnapshot to BuildingSnapshot. It is
represented in the PostgreSQL database as an additional seed_buildingsnapshot_children table.

In our case here, BS0 and BS1 would both have children BS2, and BS2 would have parents BS0 and BS1.

Note: throughout most of the application, the search_buildings endpoint is used to search or list active building.
This is to say, buildings that are pointed to by an active CanonicalBuilding. The search_mapping_results endpoint
allows the search of buildings regardless of whether the BuildingSnapshot is pointed to by an active CanonicalBuilding
or not and this search is needed during the mapping preview and matching sections of the application.

For illustration purposes let’s suppose BS2 and a new building BS3 match to form a child BS4.

4.1. parents and children 35

SEED Platform Documentation, Release 2.13.0

parent child
BS0 BS2
BS1 BS2
BS2 BS4
BS3 BS4

And the corresponding tree would look like:

BS0 BS1
\ /
BS2 BS3
\ /
BS4 <-- CB0

BS0 --> CB0
BS1 --> CB0
BS2 --> CB0
BS3 --> CB0
BS4 --> CB0

4.1.1 matching

During the auto-matching process, if a raw BuildingSnapshot matches an existing BuildingSnapshot instance, then
it will point to the existing BuildingSnapshot instance’s CanonicalBuilding. In the case where there is no existing
BuildingSnapshot to match, a new CanonicalBuilding will be created, as happened to B0 and C0 above.

field BS0 BS1 BS2 (child)
id1 11 11 11
id2 12 12
id3 13 13
id4 14 15 15

4.2 manual-matching vs auto-matching

Since BuildingSnapshots can be manually matched, there is the possibility for two BuildingSnapshots each with an
active CanonicalBuilding to match and the system has to choose to move only one CanonicalBuilding to the tip of the
tree for the primary BuildingSnapshot and deactivate the secondary BuildingSnapshot’s CanonicalBuilding.

Take for example:

BS0 BS1
\ /
BS2 BS3
\ /
BS4 <-- CB0 (active: True) BS5 <-- CB1 (active: True)

If a user decides to manually match BS4 and BS5, the system will take the primary BuildingSnapshot’s Canonical-
Building and have it point to their child and deactivate CB1. The deactivation is handled by setting a field on the
CanonicalBuilding instance, active, from True to False.

Here is what the tree would look like after the manual match of BS4 and BS5:

36 Chapter 4. Data Model

SEED Platform Documentation, Release 2.13.0

BS0 BS1
\ /
BS2 BS3
\ /
BS4 BS5 <-- CB1 (active: False)
\ /
BS6 <-- CB0 (active: True)

Even though BS5 is pointed to by a CanonicalBuilding, CB1, BS5 will not be returned by the normal
search_buildings endpoint because the CanonicalBuilding pointing to it has its field active set to False.

Note: anytime a match is unmatched the system will create a new CanonicalBuilding or set an existing Canonical-
Building’s active field to True for any leaf BuildingSnapshot trees.

4.3 what really happens to the BuildingSnapshot table on import (and
when)

The above is conceptually what happens but sometimes the devil is in the details. Here is what happens to the Build-
ingSnapshot table in the database when records are imported.

Every time a record is added at least two BuildingSnapshot records are created.

Consider the following simple record:

Property Id Year Ending Property Floor Area Address 1 Release Date
499045 2000 1234 1 fake st 12/12/2000

The first thing the user is upload the file. When the user sees the “Successful Upload!” dialog one record has been
added to the BuildingSnapshot table.

This new record has an id (73700 in this case) and a created and modified timestamp. Then there are a lot of empty
fields and a source_type of 0. Then there is the extra_data column which contains the contents of the record in key-value
form:

Address 1 “1 fake st”

Property Id “499045”

Year Ending “2000”

Release Date “12/12/2000”

Property Floor Area “1234”

And a corresponding extra_data_sources that looks like

Address 1 73700

Property Id 73700

Year Ending 73700

Release Date 73700

Property Floor Area 73700

4.3. what really happens to the BuildingSnapshot table on import (and when) 37

SEED Platform Documentation, Release 2.13.0

All of the fields that look like _source_id are also populated with 73700 E.G. owner_postal_code_source_id.

The other fields of interest are the organization field which is populated with the user’s default organization and the
import_file_id field which is populated with a reference to a data_importer_importfile record.

At this point the record has been created before the user hits the “Continue to data mapping” button.

The second record (id = 73701) is created by the time the user gets to the screen with the “Save Mappings” button.
This second record has the following fields populated:

• id

• created

• modified

• pm_property_id

• year_ending

• gross_floor_area

• address_line_1

• release_date

• source_type (this is 2 instead of 0 as with the other record)

• import_file_id

• organization_id.

That is all. All other fields are empty. In this case that is all that happens.

Now consider the same user uploading a new file from the next year that looks like

Property Id Year Ending Property Floor Area Address 1 Release Date
499045 2000 1234 1 fake st 12/12/2001

As before one new record is created on upload. This has id 73702 and follows the same pattern as 73700. And similarly
73703 is created like 73701 before the “Save Mappings” button appears.

However this time the system was able to make a match with an existing record. After the user clicks the “Confirm
mappings & start matching” button a new record is created with ID 73704.

73704 is identical to 73703 (in terms of contents of the BuildingSnapshot table only) with the following exceptions:

• created and modified timestamps are different

• match type is populated and has a value of 1

• confidence is populated and has a value of .9

• source_type is 4 instead of 2

• canonical_building_id is populated with a value

• import_file_id is NULL

• last_modified_by_id is populated with value 2 (This is a key into the landing_seeduser table)

• address_line_1_source_id is 73701

• gross_floor_area_source_id is populated with value 73701

• pm_property_id_source_id is populated with 73701

• release_date_source_id is populated with 73701

38 Chapter 4. Data Model

SEED Platform Documentation, Release 2.13.0

• year_ending_source_id is populated with 73701

4.4 what really happens to the CanonicalBuilding table on import (and
when)

In addition to the BuildingSnapshot table the CanonicalBuilding table is also updated during the import process. To
summarize the above 5 records were created in the BuildingSnapshot table:

1. 73700 is created from the raw 2000 data

2. 73701 is the mapped 2000 data,

3. 73702 is created from the raw 2001 data

4. 73703 is the mapped 2001 data

5. 73704 is the result of merging the 2000 and 2001 data.

In this process CanonicalBuilding is updated twice. First when the 2000 record is imported the CanonicalBuilding gets
populated with one new row at the end of the matching step. I.E. when the user sees the “Load More Data” screen. At
this point there is a new row that looks like

id active canonical_building_id
20505 TRUE 73701

At this point there is one new canonical building and that is the BuildingSnapshot with id 73701. Next the user uploads
the 2001 data. When the “Matching Results” screen appears the CanonicalBuilding table has been updated. Now it
looks like

id active canonical_building_id
20505 TRUE 73704

There is still only one canonical building but now it is the BuildingSnapshot record that is the result of merging the
2000 and 2001 data: id = 73704.

4.5 organization

BuildingSnapshots belong to an Organization field that is a foreign key into the organization model (orgs_organization
in Postgres).

Many endpoints filter the buildings based on the organizations the requesting user belongs to. E.G. get_buildings
changes which fields are returned based on the requesting user’s membership in the BuildingSnapshot’s organization.

4.4. what really happens to the CanonicalBuilding table on import (and when) 39

SEED Platform Documentation, Release 2.13.0

4.6 *_source_id fields

Any field in the BuildingSnapshot table that is populated with data from a submitted record will have a corresponding
_source_id field. E.G pm_property_id has pm_property_id_source_id, address_line_1 has address_line_1_source_id,
etc. . .

These are foreign keys into the BuildingSnapshot that is the source of that value. To extend the above table

field BS0 BS1 BS2 (child) BS2 (child) _source_id
id1 11 11 BS0
id2 12 12 BS1

NOTE: The BuildingSnapshot records made from the raw input file have all the _source_id fields populated with that
record’s ID. The non-canonical BuildingSnapshot records created from the mapped data have none set. The canonical
BuildingSnapshot records that are the result of merging two records have only the _source_id fields set where the
record itself has data. E.G. in the above address_line_1 is set to “1 fake st.” so there is a value in the canonical
BuildingSnapshot’s address_line_1_source_id field. However there is no block number so block_number_source_id is
empty. This is unlike the two raw BuildingSnapshot records who also have no block_number but nevertheless have a
block_number_source_id populated.

4.7 extra_data

The BuildingSnapshot model has many “named” fields. Fields like “address_line_1”, “year_built”, and
“pm_property_id”. However the users are allowed to submit files with arbitrary fields. Some of those arbitrary fields
can be mapped to “named” fields. E.G. “Street Address” can usually be mapped to “Address Line 1”. For all the fields
that cannot be mapped like that there is the extra_data field.

extra_data is Django json field that serves as key-value storage for other user-submitted fields. As with the other
“named” fields there is a corresponding extra_data_sources field that serves the same role as the other _source_id
fields. E.G. If a BuildingSnapshot has an extra_data field that looks like

an_unknown_field 1

something_else 2

It should have an extra_data_sources field that looks like

an_unknown_field some_BuildingSnapshot_id

something_else another_BuildingSnapshot_id

4.8 saving and possible data loss

When saving a Property file some fields that are truncated if too long. The following are truncated to 255 characters

• jurisdiction_tax_lot_id

• pm_property_id

• custom_id_1

• ubid

• lot_number

• block_number

40 Chapter 4. Data Model

SEED Platform Documentation, Release 2.13.0

• district

• owner

• owner_email

• owner_telephone

• owner_address

• owner_city_state

• owner_postal_code

And the following are truncated to 255:

• property_name

• address_line_1

• address_line_2

• city

• postal_code

• state_province

• building_certification

No truncation happens to any of the fields stored in extra_data.

4.8. saving and possible data loss 41

SEED Platform Documentation, Release 2.13.0

42 Chapter 4. Data Model

CHAPTER

FIVE

DATA QUALITY

Data quality checks are run after the data are paired, during import of Properties/TaxLots, or on-demand by selecting
rows in the inventory page and clicking the action button. This checks whether any default or user-defined Rules are
broken or satisfied by Property/TaxLot records.

Notably, in most cases when data quality checks are run, Labels can be applied for any broken Rules that have a Label.
To elaborate, Rules can have an attached Label. When a data quality check is run, records that break one of these
“Labeled Rules” are then given that Label. The case where this Label attachment does not happen is during import due
to performance reasons.

43

SEED Platform Documentation, Release 2.13.0

44 Chapter 5. Data Quality

CHAPTER

SIX

MAPPING

This document describes the set of calls that occur from the web client or API down to the back-end for the process of
mapping data into SEED.

An overview of the process is:

1. Import - A file is uploaded to the server

2. Save - The file is batched saved into the database as JSON data

3. Mapping - Mapping occurs on that file

4. Matching / Merging

5. Pairing

6.1 Import

From the web UI, the import process invokes seed.views.main.save_raw_data to save the data. When the data is
done uploading, we need to know whether it is a Portfolio Manager file, so we can add metadata to the record
in the database. The end of the upload happens in seed.data_importer.views.DataImportBackend.upload_complete.
At this point, the request object has additional attributes for Portfolio Manager files. These are saved in the model
seed.data_importer.models.ImportFile.

6.2 Mapping

Once files are uploaded, file header columns need to be mapped to SEED columns. Mappings can be specified/decided
manually for any particular file import, or mapping profiles can be created and subsequently applied to any file imports.

When a column mapping profile is applied to an import file, file header columns defined in the profile must match exactly
(spaces, lowercase, uppercase, etc.) in order for the corresponding SEED column information to be used/mapped.

45

SEED Platform Documentation, Release 2.13.0

6.3 Matching

Todo: document

6.4 Pairing

Todo: document

46 Chapter 6. Mapping

CHAPTER

SEVEN

MODULES

7.1 Configuration

7.1.1 Submodules

7.1.2 Template Context

:copyright (c) 2014 - 2022, The Regents of the University of California, through Lawrence Berkeley National Labo-
ratory (subject to receipt of any required approvals from the U.S. Department of Energy) and contributors. All rights
reserved. # NOQA :author

config.template_context.sentry_js(request)

config.template_context.session_key(request)

7.1.3 Tests

7.1.4 Utils

:copyright (c) 2014 - 2022, The Regents of the University of California, through Lawrence Berkeley National Labo-
ratory (subject to receipt of any required approvals from the U.S. Department of Energy) and contributors. All rights
reserved. # NOQA :author

config.utils.de_camel_case(name)

47

SEED Platform Documentation, Release 2.13.0

7.1.5 Views

7.1.6 WSGI

7.2 Data Package

7.2.1 Submodules

7.2.2 BEDES

7.2.3 Module contents

7.3 Data Importer Package

7.3.1 Submodules

7.3.2 Managers

7.3.3 Models

7.3.4 URLs

7.3.5 Utils

7.3.6 Views

7.3.7 Module contents

7.4 Features Package

7.4.1 Submodules

7.4.2 Module contents

7.5 Landing Package

7.5.1 Subpackages

seed.landing.management package

Subpackages

Landing Management Package

Submodules

48 Chapter 7. Modules

SEED Platform Documentation, Release 2.13.0

Update EULA

Module contents

Module contents

7.5.2 Submodules

7.5.3 Forms

7.5.4 Models

7.5.5 Tests

7.5.6 URLs

7.5.7 Views

7.5.8 Module contents

7.6 Library Packages

7.6.1 Submodules

7.6.2 Module contents

7.7 Mapping Package

7.7.1 Submodules

7.7.2 seed.mappings.mapper module

7.7.3 seed.mappings.seed_mappings module

7.7.4 Module contents

7.8 Managers Package

7.8.1 Subpackages

Manager Tests Package

Submodules

Test JSON Manager

7.6. Library Packages 49

SEED Platform Documentation, Release 2.13.0

Module contents

7.8.2 Submodules

7.8.3 JSON

7.8.4 Module contents

7.9 Models

7.9.1 Submodules

7.9.2 AuditLog

7.9.3 Columns

7.9.4 Cycles

7.9.5 Joins

7.9.6 Generic Models

7.9.7 Projects

7.9.8 Properties

7.9.9 TaxLots

7.9.10 Module contents

7.10 Public Package

7.10.1 Submodules

7.10.2 Models

7.10.3 Module contents

7.11 SEED Package

7.11.1 Subpackages

Management Package

Subpackages

50 Chapter 7. Modules

SEED Platform Documentation, Release 2.13.0

Module contents

Templatetags Package

Submodules

Breadcrumbs

Test Helpers Package

Subpackages

Test Helper Factor Package

Subpackages

Test Helper Factory Lib Package

Submodules

Chomsky

Submodules

Helpers

Module contents

Tests Package

Submodules

Admin Views

Decorators

Exporters

Models

Tasks

Views

Tests

7.11. SEED Package 51

SEED Platform Documentation, Release 2.13.0

Utils

7.11.2 Inheritance

7.11.3 Submodules

7.11.4 Decorators

7.11.5 Factory

7.11.6 Models

7.11.7 Search

7.11.8 Tasks

7.11.9 Token Generator

7.11.10 URLs

7.11.11 Utils

7.11.12 Views

7.11.13 Module contents

7.12 Serializers Package

7.12.1 Submodules

7.12.2 Serializers

7.12.3 Labels

7.12.4 Module contents

7.13 URLs Package

7.13.1 Submodules

7.13.2 Accounts

7.13.3 APIs

7.13.4 Main

7.13.5 Projects

7.14 Utilities Package

7.14.1 Submodules

7.14.2 APIs

7.14.3 Buildings

7.14.4 Constants

7.14.5 Mappings

7.14.6 Organizations

7.14.7 Projects

7.14.8 Time

7.15 Views Package

7.15.1 Submodules

7.15.2 Accounts

7.15.3 APIs

7.15.4 Main

7.15.5 Meters

7.15.6 Projects

7.15.7 Module contents

52 Chapter 7. Modules

CHAPTER

EIGHT

DEVELOPER RESOURCES

8.1 General Notes

8.1.1 Flake Settings

Flake is used to statically verify code syntax. If the developer is running flake from the command line, they should
ignore the following checks in order to emulate the same checks as the CI machine.

Code Description
E402 module level import not at top of file
E501 line too long (82 characters) or max-line = 100
E731 do not assign a lambda expression, use a def
W503 line break occurred before a binary operator
W504 line break occurred after a binary operator

To run flake locally call:

tox -e flake8

8.1.2 Python Type Hints

Python type hints are beginning to be added to the SEED codebase. The benefits are eliminating some accidental typing
mistakes to prevent bugs as well as a better IDE experience.

Usage

SEED does not require exhaustive type annotations, but it is recommended you add them if you create any new functions
or refactor any existing code where it might be beneficial and not require a ton of additional effort.

When applicable, we recommend you use built-in collection types such as list, dict or tuple instead of the capital-
ized types from the typing module.

Common gotchas: - If trying to annotate a class method with the class itself, import from __future__ import
annotations - If you’re getting warnings about runtime errors due to a type name, make sure your IDE is set up to
point to an environment with python 3.9 - If you’re wasting time trying to please the type checker, feel free to throw #
type: ignore on the problematic line (or at the top of the file to ignore all issues for that file)

53

https://docs.python.org/3/whatsnew/3.9.html#type-hinting-generics-in-standard-collections

SEED Platform Documentation, Release 2.13.0

Type Checking

CI currently runs static type checking on the codebase using mypy. For your own IDE, we recommend the following
extensions:

• VSCode: Pylance (uses Microsoft’s Pyright type checking)

To run the same typechecking applied in CI (i.e. using mypy) you can run the following

tox -e mypy

8.2 Django Notes

8.2.1 Adding New Fields to Database

Adding new fields to SEED can be complicated since SEED has a mix of typed fields (database fields) and extra data
fields. Follow the steps below to add new fields to the SEED database:

1. Add the field to the PropertyState or the TaxLotState model. Adding fields to the Property or TaxLot models is
more complicated and not documented yet.

2. Add field to list in the following locations:

• models/columns.py: Column.DATABASE_COLUMNS

• TaxLotState.coparent or PropertyState.coparent: SQL query and keep_fields

1. Run ./manage.py makemigrations

2. Add in a Python script in the new migration to add in the new column into every organizations list of columns.
Note that the new_db_fields will be the same as the data in the Column.DATABASE_COLUMNS that were
added.

def forwards(apps, schema_editor):
Column = apps.get_model("seed", "Column")
Organization = apps.get_model("orgs", "Organization")

new_db_fields = [
{

'column_name': 'geocoding_confidence',
'table_name': 'PropertyState',
'display_name': 'Geocoding Confidence',
'data_type': 'number',

}, {
'column_name': 'geocoding_confidence',
'table_name': 'TaxLotState',
'display_name': 'Geocoding Confidence',
'data_type': 'number',

}
]

Go through all the organizations
for org in Organization.objects.all():

for new_db_field in new_db_fields:
columns = Column.objects.filter(

(continues on next page)

54 Chapter 8. Developer Resources

http://mypy-lang.org/
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance

SEED Platform Documentation, Release 2.13.0

(continued from previous page)

organization_id=org.id,
table_name=new_db_field['table_name'],
column_name=new_db_field['column_name'],
is_extra_data=False,

)

if not columns.count():
new_db_field['organization_id'] = org.id
Column.objects.create(**new_db_field)

elif columns.count() == 1:
If the column exists, then just update the display_name␣

→˓and data_type if empty
c = columns.first()
if c.display_name is None or c.display_name == '':

c.display_name = new_db_field['display_name']
if c.data_type is None or c.data_type == '' or c.data_type␣

→˓== 'None':
c.data_type = new_db_field['data_type']

c.save()
else:

print(" More than one column returned")

class Migration(migrations.Migration):
dependencies = [

('seed', '0090_auto_20180425_1154'),
]

operations = [
... existing db migrations ...,
migrations.RunPython(forwards),

]

3. Run migrations ./manage.py migrate

4. Run unit tests, fix failures. Below is a list of files that need to be fixed (this is not an exhaustive list)

• test_mapping_data.py:test_keys

• test_columns.py:test_column_retrieve_schema

• test_columns.py:test_column_retrieve_db_fields

1. (Optional) Update example files to include new fields

2. Test import workflow with mapping to new fields

8.2. Django Notes 55

SEED Platform Documentation, Release 2.13.0

8.3 NginX Notes

Toggle maintenance mode to display a maintenance page and prevent access to all site resources including API end-
points:

docker exec seed_web ./docker/maintenance.sh on
docker exec seed_web ./docker/maintenance.sh off

8.4 AngularJS Integration Notes

8.4.1 Template Tags

Angular and Django both use {{ and }} as variable delimiters, and thus the AngularJS variable delimiters are renamed
{$ and $}.

window.BE.apps.seed = angular.module('BE.seed', ['$interpolateProvider'], function (
→˓$interpolateProvider) {

$interpolateProvider.startSymbol("{$");
$interpolateProvider.endSymbol("$}");

}
);

8.4.2 Django CSRF Token and AJAX Requests

For ease of making angular $http requests, we automatically add the CSRF token to all $http requests as recommended
by http://django-angular.readthedocs.io/en/latest/integration.html#xmlhttprequest

window.BE.apps.seed.run(function ($http, $cookies) {
$http.defaults.headers.common['X-CSRFToken'] = $cookies['csrftoken'];

});

8.4.3 Routes and Partials or Views

Routes in static/seed/js/seed.js (the normal angularjs app.js)

SEED_app.config(['stateHelperProvider', '$urlRouterProvider', '$locationProvider',␣
→˓function (stateHelperProvider, $urlRouterProvider, $locationProvider) {
stateHelperProvider
.state({
name: 'home',
url: '/',
templateUrl: static_url + 'seed/partials/home.html'

})
.state({
name: 'profile',
url: '/profile',
templateUrl: static_url + 'seed/partials/profile.html',
controller: 'profile_controller',

(continues on next page)

56 Chapter 8. Developer Resources

http://django-angular.readthedocs.io/en/latest/integration.html#xmlhttprequest

SEED Platform Documentation, Release 2.13.0

(continued from previous page)

resolve: {
auth_payload: ['auth_service', '$q', 'user_service', function (auth_service, $q,␣

→˓user_service) {
var organization_id = user_service.get_organization().id;
return auth_service.is_authorized(organization_id, ['requires_superuser']);

}],
user_profile_payload: ['user_service', function (user_service) {
return user_service.get_user_profile();

}]
}

});
}]);

HTML partials in static/seed/partials/

8.5 Logging

Information about error logging can be found here - https://docs.djangoproject.com/en/1.7/topics/logging/

Below is a standard set of error messages from Django.

A logger is configured to have a log level. This log level describes the severity of the messages that the logger will
handle. Python defines the following log levels:

DEBUG: Low level system information for debugging purposes
INFO: General system information
WARNING: Information describing a minor problem that has occurred.
ERROR: Information describing a major problem that has occurred.
CRITICAL: Information describing a critical problem that has occurred.

Each message that is written to the logger is a Log Record. The log record is stored in the web server & Celery

8.6 BEDES Compliance and Managing Columns

Columns that do not represent hardcoded fields in the application are represented using a Django database model
defined in the seed.models module. The goal of adding new columns to the database is to create seed.models.Column
records in the database for each column to import. Currently, the list of Columns is dynamically populated by importing
data.

There are default mappings for ESPM are located here:

https://github.com/SEED-platform/seed/blob/develop/seed/lib/mappings/data/pm-mapping.json

8.5. Logging 57

https://docs.djangoproject.com/en/1.7/topics/logging/
https://github.com/SEED-platform/seed/blob/develop/seed/lib/mappings/data/pm-mapping.json

SEED Platform Documentation, Release 2.13.0

8.7 Resetting the Database

This is a brief description of how to drop and re-create the database for the seed application.

The first two commands below are commands distributed with the Postgres database, and are not part of the seed
application. The third command below will create the required database tables for seed and setup initial data that
the application expects (initial columns for BEDES). The last command below (spanning multiple lines) will create a
new superuser and organization that you can use to login to the application, and from there create any other users or
organizations that you require.

Below are the commands for resetting the database and creating a new user:

createuser -U seed seeduser

psql -c 'DROP DATABASE "seed"'
psql -c 'CREATE DATABASE "seed" WITH OWNER = "seeduser";'
psql -c 'GRANT ALL PRIVILEGES ON DATABASE "seed" TO seeduser;'
psql -c 'ALTER USER "seeduser" CREATEDB CREATEROLE SUPERUSER;'
psql -d seed -c 'CREATE EXTENSION IF NOT EXISTS postgis;'
psql -d seed -c 'CREATE EXTENSION IF NOT EXISTS timescaledb;'
psql -d seed -c 'SELECT timescaledb_pre_restore();'
psql -d seed -c 'SELECT timescaledb_post_restore();'

./manage.py migrate

./manage.py create_default_user \
--username=demo@seed-platform.org \
--password=password \
--organization=testorg

8.8 Restoring a Database Dump

psql -c 'DROP DATABASE "seed";'
psql -c 'CREATE DATABASE "seed" WITH OWNER = "seeduser";'
psql -c 'GRANT ALL PRIVILEGES ON DATABASE "seed" TO "seeduser";'
psql -c 'ALTER USER "seeduser" CREATEDB CREATEROLE SUPERUSER;'
psql -d seed -c 'CREATE EXTENSION IF NOT EXISTS postgis;'
psql -d seed -c 'CREATE EXTENSION IF NOT EXISTS timescaledb;'
psql -d seed -c 'SELECT timescaledb_pre_restore();'

restore a previous database dump (must be pg_restore 12+)
/usr/lib/postgresql/12/bin/pg_restore -U seeduser -d seed /backups/prod-backups/seedv2_
→˓20191203_000002.dump
if any errors appear during the pg_restore process check that the `installed_version`␣
→˓of the timescaledb extension where the database was dumped matches the extension␣
→˓version where it's being restored
`SELECT default_version, installed_version FROM pg_available_extensions WHERE name =
→˓'timescaledb';`

psql -d seed -c 'SELECT timescaledb_post_restore();'

./manage.py migrate
(continues on next page)

58 Chapter 8. Developer Resources

SEED Platform Documentation, Release 2.13.0

(continued from previous page)

if needed add a user to the database
./manage.py create_default_user \

--username=demo@seed-platform.org \
--password=password \
--organization=testorg

if restoring a seedv2 backup to a different deployment update the site settings for␣
→˓password reset emails
./manage.py shell

from django.contrib.sites.models import Site
site = Site.objects.first()
site.domain = 'dev1.seed-platform.org'
site.name = 'SEED Dev1'
site.save()

8.9 Migrating the Database

Migrations are handles through Django; however, various versions have customs actions for the migrations. See the
migrations page for more information based on the version of SEED.

8.10 Testing

JS tests can be run with Jasmine at the url /angular_js_tests/.

Python unit tests are run with

python manage.py test --settings=config.settings.test

Note on geocode-related testing: Most of these tests use VCR.py and cassettes to capture and reuse recordings
of HTTP requests and responses. Given that, unless you want to make changes and/or refresh the cas-
settes/recordings, there isn’t anything needed to run the geocode tests.

In the case that the geocoding logic/code is changed or you’d like to the verify the MapQuest API is still working
as expected, you’ll need to run the tests with a small change. Namely, you’ll want to provide the tests with an API
key via an environment variable called “TESTING_MAPQUEST_API_KEY” or within your local_untracked.py
file with that same variable name.

In order to refresh the actual cassettes, you’ll just need to delete or move the old ones which can be found at
“.seed/tests/data/vcr_cassettes”. The API key should be hidden within the cassettes, so these new cassettes can
and should be pushed to GitHub.

Run coverage using

coverage run manage.py test --settings=config.settings.test
coverage report --fail-under=83

Python compliance uses PEP8 with flake8

8.9. Migrating the Database 59

SEED Platform Documentation, Release 2.13.0

flake8
or
tox -e flake8

JS Compliance uses jshint

jshint seed/static/seed/js

8.11 Best Practices

1. Make sure there is an issue created for items you are working on (for tracking purposes and so that the item
appears in the changelog for the release)

2. Use the following labels on the GitHub issue: Feature (features will appear as “New” item in the changelog)
Enhancement (these will appear as “Improved” in the changelog) Bug (these will appear as “Fixed” in the
changelog)

3. Move the ticket/issue to ‘In Progress’ in the GitHub project tracker when you begin work

4. Branch off of the ‘develop’ branch (unless it’s a hotfix for production)

5. Write a test for the code added.

6. Make sure to test locally. note that all branches created and pushed to GitHub will also be tested automatically.

7. When done, create a pull request (you can group related issues together in the same PR). Assign a reviewer to
look over the code

8. Use the “DO NOT MERGE” label for Pull Requests that should not be merged

9. When PR has been reviewed and approved, move the ticket/issue to the ‘Ready to Deploy to Dev’ box in the
GitHub project tracker.

8.12 Release Instructions

To make a release do the following:

1. Github admin user, on develop branch: update the package.json and npm-shrinkwrap.json files with the
most recent version number. Always use MAJOR.MINOR.RELEASE.

2. Update the docs/sources/migrations.rst file with any required actions.

3. Run the docs/scripts/change_log.py script and add the changes to the CHANGELOG.md file for the range
of time between last release and this release. Only add the Closed Issues. Also make sure that all the pull requests
have a related Issue in order to be included in the change log.

python docs/scripts/change_log.py –k GITHUB_API_TOKEN –s 2020-09-25 –e 2020-12-28

4. Paste the results (remove unneeded Accepted Pull Requests and the new issues) into the CHANGELOG.md.
Cleanup the formatting (if needed).

5. Make sure that any new UI needing localization has been tagged for translation, and that any new translation keys
exist in the lokalise.com project. (see translation documentation).

6. Once develop passes, then create a new PR from develop to main.

7. Draft new Release from Github (https://github.com/SEED-platform/seed/releases).

60 Chapter 8. Developer Resources

https://github.com/SEED-platform/seed/releases

SEED Platform Documentation, Release 2.13.0

8. Include list of changes since previous release (i.e. the content in the CHANGELOG.md)

9. Verify that the Docker versions are built and pushed to Docker hub (https://hub.docker.com/r/seedplatform/seed/
tags/).

10. Go to Read the Docs and enable the latest version to be active (https://readthedocs.org/dashboard/seed-platform/
versions/)

8.12. Release Instructions 61

https://hub.docker.com/r/seedplatform/seed/tags/
https://hub.docker.com/r/seedplatform/seed/tags/
https://readthedocs.org/dashboard/seed-platform/versions/
https://readthedocs.org/dashboard/seed-platform/versions/

SEED Platform Documentation, Release 2.13.0

62 Chapter 8. Developer Resources

CHAPTER

NINE

LICENSE

Copyright (c) 2014 - 2022, The Regents of the University of California, through Lawrence Berkeley National Laboratory
(subject to receipt of any required approvals from the U.S. Department of Energy) and contributors. All rights reserved.

1. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
(2) Redistributions in binary form must reproduce the copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. (3) Neither the name of the Univer-
sity of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission. (4) Nei-
ther the names Standard Energy Efficiency Data Platform, Standard Energy Efficiency Data, SEED Platform, SEED,
derivatives thereof nor designations containing these names, may be used to endorse or promote products derived from
this software without specific prior written permission from the U.S. Dept. of Energy.

2. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

63

SEED Platform Documentation, Release 2.13.0

64 Chapter 9. License

CHAPTER

TEN

HELP

10.1 For SEED-Platform Users

Please visit our User Support website for tutorials and documentation to help you learn how to use SEED-Platform.

https://sites.google.com/a/lbl.gov/seed/

There is also a link to the SEED-Platform Users forum, where you can connect with other users.

https://groups.google.com/forum/#!forum/seed-platform-users

For direct help on a specific problem, please email: SEED-Support@lists.lbl.gov

10.2 For SEED-Platform Developers

The Open Source code is available on the Github organization SEED-Platform:

https://github.com/SEED-platform

Please join the SEED-Platform Dev forum where you can connect with other developers.

https://groups.google.com/forum/#!forum/seed-platform-dev

65

https://sites.google.com/a/lbl.gov/seed/
https://groups.google.com/forum/#!forum/seed-platform-users
mailto:SEED-Support@lists.lbl.gov
https://github.com/SEED-platform
https://groups.google.com/forum/#!forum/seed-platform-dev

SEED Platform Documentation, Release 2.13.0

66 Chapter 10. Help

CHAPTER

ELEVEN

FREQUENTLY ASKED QUESTIONS

Here are some frequently asked questions and/or issues.

• Questions

– What is the SEED Platform?

• Issues

– Why is the domain set to example.com?

– Why aren’t the static assets being served correctly?

11.1 Questions

11.1.1 What is the SEED Platform?

The Standard Energy Efficiency Data (SEED) Platform™ is a web-based application that helps organizations easily
manage data on the energy performance of large groups of buildings. Users can combine data from multiple sources,
clean and validate it, and share the information with others. The software application provides an easy, flexible, and cost-
effective method to improve the quality and availability of data to help demonstrate the economic and environmental
benefits of energy efficiency, to implement programs, and to target investment activity.

The SEED application is written in Python/Django, with AngularJS, Bootstrap, and other JavaScript libraries used for
the front-end. The back-end database is required to be PostgreSQL.

The SEED web application provides both a browser-based interface for users to upload and manage their building data,
as well as a full set of APIs that app developers can use to access these same data management functions.

Work on SEED Platform is managed by the National Renewable Energy Laboratory, with funding from the U.S. De-
partment of Energy.

67

SEED Platform Documentation, Release 2.13.0

11.2 Issues

11.2.1 Why is the domain set to example.com?

If you see example.com in the emails that are sent from your hosted version of SEED then you will need to update your
django sites object in the database.

$./manage.py shell

from django.contrib.sites.models import Site
one = Site.objects.all()[0]
one.domain = 'newdomain.org'
one.name = 'SEED'
one.save()

11.2.2 Why aren’t the static assets being served correctly?

Make sure that your local_untracked.py file does not have STATICFILES_STORAGE set to anything. If so, then
comment out that section and redeploy/recollect/compress your static assets.

68 Chapter 11. Frequently Asked Questions

CHAPTER

TWELVE

UPDATING THIS DOCUMENTATION

This python code documentation was generated by running the following:

$ pip install -r requirements/local.txt
$ sphinx-apidoc -o docs/source/modules . seed/lib/mcm seed/lib/superperms
$ cd docs
$ make html

69

SEED Platform Documentation, Release 2.13.0

70 Chapter 12. Updating this documentation

CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• modindex

• search

71

SEED Platform Documentation, Release 2.13.0

72 Chapter 13. Indices and tables

PYTHON MODULE INDEX

c
config.template_context, 47
config.tests, 47
config.utils, 47

73

SEED Platform Documentation, Release 2.13.0

74 Python Module Index

INDEX

C
config.template_context

module, 47
config.tests

module, 47
config.utils

module, 47

D
de_camel_case() (in module config.utils), 47

M
module

config.template_context, 47
config.tests, 47
config.utils, 47

S
sentry_js() (in module config.template_context), 47
session_key() (in module config.template_context), 47

75

	Getting Started
	Development Setup
	Installation on OSX
	Quick Installation Instructions
	Prerequisites
	PostgreSQL 11.1
	PostGIS 2.5
	TimescaleDB 1.5.0
	Python Packages
	NodeJS/npm
	Configure Django and Databases
	MapQuest API Key
	Run Django Migrations
	Django Admin User
	Install Redis
	Install JavaScript Dependencies
	Start the Server
	Login

	Installation using Docker
	Docker Native (Ubuntu)
	Docker Native (Windows/OSX)
	Building and Running Containers for Non-Development
	Using Docker for Development
	Build
	Running the Server
	Running Tests
	Debugging

	Deployment Guide
	AWS Setup
	Prerequisites
	Amazon Web Services (AWS) Dependencies

	Python Dependencies
	JavaScript Dependencies
	Database Configuration
	Cache and Message Broker
	Running Celery the Background Task Worker

	General Linux Setup
	Prerequisites
	Configure PostgreSQL
	Python Dependencies
	JavaScript Dependencies
	Django Database Configuration
	Cache and Message Broker
	Creating the initial user
	Running celery the background task worker
	Running the development web server
	Running a production web server
	Environment Variables
	Mail Services
	AWS SES Service
	SMTP service

	local_untracked.py

	Docker Deployment on AWS
	Installation
	Deploying with OEP

	Kubernetes Deployment Guide with Helm
	Setup
	Cluster
	AWS CLI Configuration

	Kubectl
	Helm
	EKS Control (AWS Specific)
	Charts

	Deployment
	Managing Existing Clusters
	Upgrade/Redeploy the Helm Stack
	Managing the Kubernetes Cluster (AWS Specific)
	Logging In
	Update web and web-celery

	Other Resources

	Migrations
	Monitoring
	Sentry

	API
	Authentication
	Payloads
	Responses
	API Endpoints

	Data Model
	parents and children
	matching

	manual-matching vs auto-matching
	what really happens to the BuildingSnapshot table on import (and when)
	what really happens to the CanonicalBuilding table on import (and when)
	organization
	*_source_id fields
	extra_data
	saving and possible data loss

	Data Quality
	Mapping
	Import
	Mapping
	Matching
	Pairing

	Modules
	Configuration
	Submodules
	Template Context
	Tests
	Utils
	Views
	WSGI

	Data Package
	Submodules
	BEDES
	Module contents

	Data Importer Package
	Submodules
	Managers
	Models
	URLs
	Utils
	Views
	Module contents

	Features Package
	Submodules
	Module contents

	Landing Package
	Subpackages
	seed.landing.management package
	Subpackages
	Landing Management Package
	Submodules
	Update EULA
	Module contents

	Module contents

	Submodules
	Forms
	Models
	Tests
	URLs
	Views
	Module contents

	Library Packages
	Submodules
	Module contents

	Mapping Package
	Submodules
	seed.mappings.mapper module
	seed.mappings.seed_mappings module
	Module contents

	Managers Package
	Subpackages
	Manager Tests Package
	Submodules
	Test JSON Manager
	Module contents

	Submodules
	JSON
	Module contents

	Models
	Submodules
	AuditLog
	Columns
	Cycles
	Joins
	Generic Models
	Projects
	Properties
	TaxLots
	Module contents

	Public Package
	Submodules
	Models
	Module contents

	SEED Package
	Subpackages
	Management Package
	Subpackages
	Module contents

	Templatetags Package
	Submodules
	Breadcrumbs

	Test Helpers Package
	Subpackages
	Test Helper Factor Package
	Subpackages
	Test Helper Factory Lib Package
	Submodules
	Chomsky
	Submodules
	Helpers

	Module contents

	Tests Package
	Submodules
	Admin Views
	Decorators
	Exporters
	Models
	Tasks
	Views
	Tests
	Utils

	Inheritance
	Submodules
	Decorators
	Factory
	Models
	Search
	Tasks
	Token Generator
	URLs
	Utils
	Views
	Module contents

	Serializers Package
	Submodules
	Serializers
	Labels
	Module contents

	URLs Package
	Submodules
	Accounts
	APIs
	Main
	Projects

	Utilities Package
	Submodules
	APIs
	Buildings
	Constants
	Mappings
	Organizations
	Projects
	Time

	Views Package
	Submodules
	Accounts
	APIs
	Main
	Meters
	Projects
	Module contents

	Developer Resources
	General Notes
	Flake Settings
	Python Type Hints
	Usage
	Type Checking

	Django Notes
	Adding New Fields to Database

	NginX Notes
	AngularJS Integration Notes
	Template Tags
	Django CSRF Token and AJAX Requests
	Routes and Partials or Views

	Logging
	BEDES Compliance and Managing Columns
	Resetting the Database
	Restoring a Database Dump
	Migrating the Database
	Testing
	Best Practices
	Release Instructions

	License
	Help
	For SEED-Platform Users
	For SEED-Platform Developers

	Frequently Asked Questions
	Questions
	What is the SEED Platform?

	Issues
	Why is the domain set to example.com?
	Why aren’t the static assets being served correctly?

	Updating this documentation
	Indices and tables
	Python Module Index
	Index

